본 연구는 온실의 온도와 CO2농도를 높이기 위해 DME버너용 연료로 DME가스를 사용했을 때 DME 연소가스의 성능을 결정하고 겨울에 상추와 양배추의 엽록소 함량 그리고 무게와 건조무게에 대한 영향정도를 조사하기 위해 수행되었다. 각각 온실1과 온실2에 처방 된 DME-1과 DME-2 처방은 덕트의 평균 DME 유량 17.4 m3 min-1과10.2 m3 min-1으로 구성됐으며, 대조군(DME-3)으로 남겨진 온실3에는 DME 가스가 공급되지 않 았다. DME 공급 시간은 각각 주차 별로 1주차는 하루당 0.5시간, 2주차는 1시간, 3주차는 1.5시간, 4주차는 2 시간으로 설정하였다. 각각 처방마다 엽록소 함량과 상추와 배추의 건조 전, 후 중량을 측정했으며, 연구결과 무처리구인 온실3과 비교하여 온실1과 온실2 의 CO2 농도는 각각 265%, 174% 증가하였고, 온도의 경우 4.8oC, 3.10oC 상승하였다. DME 가스를 제외한 다른 조건이 같은 온실에서 재배된 상추와 양배추의 엽록소 함량과 생체중, 건물중은 온실1에서 (유의적으로) 가장 높았으며, 온실2는 대조구 온실보다 높았다. 이러한 결과는 DME가스 연소에 의한 CO2 농도 차이에 기인된 것으로 판단된다. 일반적으로 가스연소에 의해 발생되는 유해가스 증상은 나타나지 않았으며 동절기 난방과 CO2 공급이 동시에 필요할 경우 DME가스가 기존의 경유 또는 LPG 등을 대체할 수 있는 가능성을 확인하였다. 향후 정밀한 연구를 통하여 효율적인 난방방식으로의 검토가 적극 필요하다고 판단된다.
As a result of reviewing various documents and existing researches, since the late Goryeo period, the most active period in the Ondol(溫突, Korean floor heating system) facilities is the 17th century. The phenomenological reason was recovering the buildings destroyed by the Japanese Invasion of Korea in 1592(壬辰倭亂]) & the Manchu War of 1636(丙子胡亂), but the underlying cause was an abnormal climate in which a pair of summer and winter cold continued.
In the 17th century, as the Ondol facilities grew rapidly without distinction between regions and classes, the supply and demand of fuel caused economic and natural environmental problems. And a negative and positive view on Ondol was suggested. Since the middle of the 18th century, when the demand and supply of Ondol reached its peak, which could no longer increase, a new awareness of Ondol began to grow. The room was called the Panbang(板房)and the Ondol, depending on the material that made up the floor. It was considered natural to have the Ondol from this time on. The Incan(□火間) and Jo(竈) that were made to burn were started to be recorded as a kitchen, regardless of size and function.
Changes in social awareness of Ondol have led to concerns about heating efficiency. A variety of architectural explorations were conducted. Such a search was later realized in concrete architectural form. There is a double Ondoll structure, and the column spacing is reduced compared to the previous one. The heat buffer space is formed around the Ondol room, and the double window can control the light and the air going in and out.
본 연구에서는 실측을 통해 시설원예용 하우스의 난방방식별 온도분포 특성 및 하우스내 열환경을 상세하게 검토하였다. 하우스내 복사환경지표인 흑구온도는 주간의 경우 실내기준 온도보다 7℃ 이상 높게 나타났으나, 야간에는 실내기준온도 와 동일한 온도로 나타났다. 심야전력 전기히터식 난방의 경우, 시간대별 온도변화는 약 3℃이내의 비교적 균일한 분포를 나타내고 있으나, 연직방향으로는 약 8℃ 정도의 비교적 큰 상하온도 분포를 나타내었다. 이것은 방열기의 설치위치 및 방열방식의 부적절함에서 기인한 것으로서, 연직방향 온도분포 경감을 위한 체계적인 검토와 일몰 후 심야전력 공급개시 이전 시간대의 실온 저하를 억제하기 위한 적절한 대책이 수립되어야 할 것이다. 온풍 난방의 경우, 하우스내 모든 위치에서 1 2℃전후의 우려할 만한 큰 폭의 온도변화가 계측되었다. 이러한 온풍난방의 문제점을 개선하기 위해서는 실온변화가 하우스내 작물생육에 미치는 영향 및 실온 변화폭을 줄이기 위한 체계적인 검토가 이루어져야 할 것이다. 무가온 하우스내 열환경은 저온의 외기조건하에서도 야간 실내기준온도는 5℃ 이상을 유지하고 있으므로, 제주지역의 경우 별도의 난방장치 없이 무가온 하우스에서 저온성 작물의 재배가 가능할 것으로 판단된다. 하우스 실내측 상부에 보온커텐을 설치하여 하우스내 공간을 상하로 분할하는 것은 상하온도 균일화 및 난방효율 향상에 기여하고 있음이 확인되었다. 본 연구를 통해 수집된 난방방식별 하우스내 열환경에 관한상세한 실험데이터는 시설원예용 하우스의 난방방식 선정 및 하우스 설계를 위한 기초자료로 유용하게 활용될 수 있을 것으로 사료된다.