Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in “Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed.” The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.
Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.
Most school buildings consist of reinforced concrete (RC) moment frames with masonry infills. The longitudinal direction frames of those school buildings are relatively weak due to the short-column effects caused by the partial masonry infills and need to be evaluated carefully. In ‘Manual for Seismic Performance Evaluation and Retrofit of School Facilities’ published in 2018, response modification factor of 2.5 is applied to non-seismic RC moment frames with partial masonry infills, but sufficient verification of the factor has not been reported yet. Therefore, this study conducted seismic performance evaluation of planar RC moment frames with partial masonry infills in accordance with both linear analysis and nonlinear static analysis procedures presented in the manual. The evaluation results from the different procedures are compared in terms of assessed performance levels and number of members not meeting target performance objectives. Finally, appropriate response modification factors are proposed with respect to a shear-controlled column ratio.
본 연구는 높은 지진의 위험이 내재된 지역에 위치한 3층, 9층 그리고 20층 철골 모멘트저항골조에 대한 반응수정계수와 주기의 영향을 평가하기 위한 것이다. 각 구조물들은 IBC 2000과 KBC 2005에서 제시하고 있는 8의 반응수정계수로 설계되었고 건물에 기대되는 최소의 성능과 최대의 성능을 평가하기 위해서 상한범위와 하한범위의 설계가 고려되었다. 또한 반응수정계수에 대한 영향을 조사하기 위하여 4개의 다른 반응수정계수들이(9, 10, 11, 12) 각 구조물에 대하여 적용되었고 각 구조물의 고유주기 값 외의 4개의 다른 주기를 추가로 적용하여 구조물의 동적거동시 주기에 대한 영향을 조사하였다. 총 150개의 해석모델들은 50년 동안 2%의 초과확률(재현 주기 2500년)을 가진 20개의 지반운동에 대하여 평가되었다. 구조물의 성능평가를 위하여 정적 Pushover와 비선형 시간이력해석이 수행되었으며 구조물의 연성능력을 평가하기 위해서 변위연성요구가 고려되었다. 3층과 9층 구조물은 변위연성요구 값이 비교적 안정적인 거동을 보인 반면 20층 구조물은 동적 불안정성을 야기하는 요소에 의해 민감하게 나타나는 것으로 조사되었다.
반응수정계수는 구조물의 비탄성 거동을 설계에 반영하고 설계지진력 산정시 설계강도를 탄성범위 이내로 저감시키기 위한 목적으로 사용하고 있다. 그러나 설계코드에서 채택하고 있는 반응수정계수는 과거의 지진피해로부터 관찰된 보편적 구조성능에 기인한 경험치이므로, 주기에 따른 동적성능과 구조 시스템의 구성에 따른 내진성능을 정확히 대변하지 못하고 있다. 본 연구에서는 중간모멘트 연성골조를 대상으로 N2 Method를 이용하여 반응수정계수와 내진성능을 평가하였으며, 그 결과를 미국의 IBC 2000 코드와 비교하여 이론적 타당성을 검증하였다. 해석결과 코드에 제시된 반응수정계수와 잘 부합되는 것으로 나타났으나, 동일한 구조시스템의 경우에도 주기에 따라 비교적 큰 차이를 보였다. 성능목표에 따른 사용성 기준을 설정하여 IDI를 평가한 결과, 설계지진에 대한 성능목표가 건물에 대한 내진성능을 대변하기는 어려우며 PBD(Performance Based Design)에 의거한 합리적인 접근이 필요한 것으로 판단된다.