본 논문에서는 역학적 변수들을 측정하는 방안으로 디지털 이미지 프로세싱과 강형식 기반의 MLS 차분법을 융합한 DIP-MLS 시 험법을 소개하고 추적점의 위치와 이미지 해상도에 대한 영향을 분석하였다. 이 방법은 디지털 이미지 프로세싱을 통해 시료에 부착 된 표적의 변위 값을 측정하고 이를 절점만 사용하는 MLS 차분법 모델의 절점 변위로 분배하여 대상 물체의 응력, 변형률과 같은 역 학적 변수를 계산한다. 디지털 이미지 프로세싱을 통해서 표적의 무게중심 점의 변위를 측정하기 위한 효과적인 방안을 제시하였다. 이미지 기반의 표적 변위를 이용한 MLS 차분법의 역학적 변수의 계산은 정확한 시험체의 변위 이력을 취득하고 정형성이 부족한 추 적 점들의 변위를 이용해 mesh나 grid의 제약 없이 임의의 위치에서 역학적 변수를 쉽게 계산할 수 있다. 개발된 시험법은 고무 보의 3 점 휨 실험을 대상으로 센서의 계측 결과와 DIP-MLS 시험법의 결과를 비교하고, 추가적으로 MLS 차분법만으로 시뮬레이션한 수치 해석 결과와도 비교하여 검증하였다. 이를 통해 개발된 기법이 대변형 이전까지의 단계에서 실제 시험을 정확히 모사하고 수치해석 결과와도 잘 일치하는 것을 확인하였다. 또한, 모서리 점을 추가한 46개의 추적점을 DIP-MLS 시험법에 적용하고 표적의 내부 점만을 이용한 경우와 비교하여 경계 점의 영향을 분석하였고 이 시험법을 위한 최적의 이미지 해상도를 제시하였다. 이를 통해 직접 실험이 나 기존의 요소망 기반 시뮬레이션의 부족한 점을 효율적으로 보완하는 한편, 실험-시뮬레이션 과정의 디지털화가 상당한 수준까지 가능하다는 것을 보여주었다.
근래 산업은 기계 자동화로 변화하고 있는 추세이며, 선박도 센서를 통해 기기 정보를 디지털 정보로 얻는다. 하지만 선박은 기기상태 점검을 위해 선원들이 정해진 시간마다 기관실을 순찰하며 기기들의 정보를 아날로그 게이지를 통해 확인하는데, 이는 순찰 중 에 선원에게 발생할 수 있는 모든 안전 위험은 물론 시간과 기회비용 또한 소모된다. 자율이동로봇을 이용한 기관실 순찰 방법은 선원의 안전 위험은 물론 시간과 기회비용도 소모되지 않기 때문에 해결책으로 활발히 연구 중이다. 자율이동로봇을 이용한 아날로그 게이지 판 독은 로봇이 게이지를 인식하기 위한 디지털화가 필요하다. 이를 위해 본 연구에서는 이미지 처리를 이용하였다. 아날로그 게이지 이미지 는 이미지 전처리를 통해 노이즈 제거 및 특징을 부각 시켰다. 이미지 전처리를 완료한 이미지는 이미지 처리를 통해 아날로그 게이지의 중심점, 지침점, 최소값 및 최대값을 검출하였다. 이 점들을 연결한 직선을 통해 최소값부터 최대값까지의 각도 및 최소값부터 지침점까 지의 각도를 획득하였다. 각도는 수식을 통해 현재 아날로그 게이지가 나타내고 있는 값을 디지털화하여 나타내었다. 실험을 통해 이미지 처리를 통한 아날로그 게이지의 디지털화가 잘되어 게이지의 현재 지시값을 근사하게 나타냄을 확인할 수 있었다. 본 알고리즘을 순찰로 봇에 적용한다면 기관실 순찰을 위한 선원의 안전 위험 및 시간과 기회비용까지 보전 할 수 있을 것으로 사료된다.
Assessment of surface cracks is important to ensuring the health of concrete structures. Traditional visual inspection processes are time-consuming and their performance depends heavily on the inspector’s skill and experience. In this paper, digital image processing techniques are employed to monitor the surface cracks in concrete. The automated processing method is proposed for further implementation to an flight drone.