Approximately 40,000 elevators are installed every year in Korea, and they are used as a convenient means of transportation in daily life. However, the continuous increase in elevators has a social problem of increased safety accidents behind the functional aspect of convenience. There is an emerging need to induce preemptive and active elevator safety management by elevator management entities by strengthening the management of poorly managed elevators. Therefore, this study examines domestic research cases related to the evaluation items of the elevator safety quality rating system conducted in previous studies, and develops a statistical model that can examine the effect of elevator maintenance quality as a result of the safety management of the elevator management entity. We review two types: odds ratio analysis and logistic regression analysis models.
In this paper, we have considered the modeling and analyses of categorical data. We modeled binary data with categorical predictors, using logistic regression to develop a statistical method. We found that ANOVA-type analyses often performed unsatisfactory, even when using arcsine-square-root transformations. We concluded that such methods are not appropriate, especially in cases where the fractions were close to 0 or 1. The logistic transformation of fraction data could be a promising alternative, but it is not desirable in the statistical sense. The major purpose of this paper is to demonstrate that logistic regression with an ANOVA-model like parameterization aids our understanding and provides a somewhat different, but sound, statistical background. We examined a simple real-world example to show that we can efficiently test the significance of regression parameters, look for interactions, estimate confidence intervals, and calculate the difference between the mean values of the referent and experimental subgroups. This paper demonstrates that precise confidence interval estimates can be obtained using the proposed ANOVA-model like approach. The method discussed here can be extended to any type of fraction data analysis, particularly for experimental design.
본 연구의 목적은 사고위치별(유입부, 유출부, 교차로내 및 횡단보도) 로지스틱 회귀 교통사고 모형을 개발하는 것이다. 충북지방경찰청의 2004~2005년도 사고 자료와 현장조사 자료를 근거로, 교통사고와 관련된 기하구조 요소, 환경 요소 등이 분석되었다. 개발된 모형은 카이제곱 p 값은 0.000 그리고 Nagelkerke R2값 0.363~0.819로 모두 통계적으로 유의한 것으로 분석된다. 개발된 모형의 공통 사고요인은 교통량, 횡단거리 및 좌회전전용차로이며, 특정변수는 교차로내 사고모형의 부도로 교통량, 그리고 횡단보도 사고모형의 주도로 U턴인 것으로 나타나고 있다. Hosmer & Lomeshow 검정은 유입부를 제외한 모형들은 p값이 0.05보다 크기 때문에 통계적으로 적합한 것으로 평가된다. 또한 정분류율 결과는 모든 모형식이 73.9% 이상으로 높은 예측력을 보이는 것으로 분석된다.