In this paper, we deal with the design of a model predictive control (MPC) for precise speed servo control of DC motor systems. The proposed controller is designed in the form of optimal control that calculates and outputs the optimized control input under constraints for each sampling. In particular, MPC designs the control inputs in advance for each sampling and predicts the outputs using them. Thus, it shows excellent control performance even in the case of disturbance or model uncertainty. The effectiveness of the proposed controller was demonstrated through computer simulations using MATLAB/Simulink and DC motor experimental system using real time controller. Moreover, the effectiveness of the proposed controller was confirmed by comparing its control performance with PID controller, which was tested under the same experimental condition as the MPC.
This paper proposes a model predictive controller of robot manipulators using a genetic algorithm to secure the best performance by performing parameter optimization with the genetic algorithm. Genetic algorithm is a natural evolutionary process modeled as a computer algorithm and has excellent performance in global optimization, so it is useful for tuning control parameters. The sliding mode controller and inverse dynamics controller are included in the lower part of the model prediction controller to minimize the problems caused by non-linearity and uncertainty of the robot manipulator. The performance superiority of the proposed method as described above has been confirmed in detail through a simulation study.
The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix Ar by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.