본 연구에서는 CFD 코드를 이용하여 목포대교의 보강거더 단면을 대상으로 방호울타리 설치 여부에 따른 동적 공기력을 해석하여 다음과 같은 결론을 얻었다. 방호울타리를 설치함에 따라 항력은 영각에 따라 약 25~50% 증 가하는데, 특히 영각이 0o 경우에 방호울타리의 설치로 인해 약 50%의 항력이 증가하며, 영각이 증가함에 따라 전체 항력에서 방호울타리의 영향으로 발생하는 항력의 비중은 점차 감소하는 경향을 보인다. 또한 교량의 방호울타리는 영각에 대한 양력의 변화율을 감소시키는 역할을 하며, 반시계방향으로 피칭모멘트를 증가시키는 역할을 한다. 교량에 설치되는 페어링은 흐름의 분리를 제한시키고 분리된 흐름의 재순환길이를 짧게 하기 때문에, 단면비가 9.7인 목포대교 의 보강거더 단면에 대한 플러터계수는 단면비가 20인 직사각형단면의 플러터계수와 비슷한 거동을 보인다. 그리고 목포대교의 경우, 방호울타리가 플러터계수에 미치는 영향은 미미한 것으로 분석되었다.
본 논문에서는 현재 건설 중인 목포대교와 선박 사이의 충돌 위험도 평가에 필요한 선박 정보와 기상 정보 수집 장치(Data Acquisition System, DAS) 개발에 관하여 기술하였다. 본 연구에서는 DAS를 통항 선박과 기상 현황 데이터를 수집하기 위한 신호 수신 및 처리 유닛과, 데이터 전송과 분배를 위한 네트워킹 유닛, 데이터 관리를 위한 유닛 등으로 구성하였다. 목포항 여객터미널과 신안군 안좌도를 왕복하는 카페리 선상에서의 현장 실험을 통해, 충돌 위기 평가에 적합한 정보를 DAS가 제공할 수 있음을 알았다. 또한 5차 버터워스 디지털 필터를 이용하여 기상 데이터에 포함된 잡음성 데이터를 충분히 억제할 수 있었다.
본 논문에서는 목포 대교와 통항 선박 사이의 충돌 확률 계산에 필요한 통계 변수 추정에 관해 기술했다. 먼저 목포대교 통항 선박들의 AIS(Automatic Identification System) 정보를 입수한 후, 선박들의 통항 궤적 분포를 분석하고, 목포대교 중심으로 부터의 이격 거리와 목포대교 통항시의 침로 및 속력 등에 대한 평균과 표준편차를 추정하였다. 궤적 분포 분석 결과, 이격 거리와 통항 침로에 대한 궤적 분포는 정규 분포 형태로 나타났고, 통항 속력 분포는 서로 다른 두 종류의 정규 분포 형태를 나타냈다. 그리고 궤적 분포와 이들의 정규 확률분포와의 상대 비교를 통해서 추정한 확률 변수 값의 유용성을 확인하였다.
본 논문에서는 현재 건설 중인 목포 대교와 통항 선박 사이에 발생 가능한 충돌 위기를 평가하기 위한 선박-교량 충돌 모델(Real-Time Bridge-Vessel Collision Model, RT-BVCM)을 제안하였다. RT-BVCM의 수학 모델은, 항행환경으로 선박이 이탈하게 되는 원인 확률과, 선박의 크기와 교량 구조로 인한 기하학적 확률, 선박의 충돌 침로와 정지거리에 기인한 충돌 회피 실패 확률 등으로 구성하였다. 그리고 이러한 확률적인 수학 모델은 1부터 5까지의 위기수준을 갖는 위기지수로 나타냈다. 본 연구에서 제안한 RT-BVCM은 기존 AASHTO(American Association of State Highway and Transportation Officials)에 제시된 선박-교량 충돌 모델과 달리, 충돌 회피를 위한 충분한 시간을 확보할 수 있는 장점이 있다. 3,000 GT와 10,000 GT 실험 선박에 다양한 항행환경을 적용한 시뮬레이션 실험 결과, 제안한 모델이 목포 대교와 통항 선박 사이의 충돌위기 평가 모델로 타당함을 확인하였다.