Due to the rapid advancements in power distribution, television, and telecommunication, aerial cables have been rampant in urban cities. Aerial cables, while cost-effective, contribute to visual pollution, pose safety hazards, and complicate urban planning. To solve these challenges, many cities are exploring new ways to construct these cables without the use of high poles and one of the solutions is transitioning to underground cable by minitrenching method. Minitrenching offers a less invasive, more efficient solution for underground cable deployment. This study highlights the potential of innovative minitrenching materials to enhance underground cable protection while addressing the limitations of aerial cable installations in urban settings. Three minitrenching materials were evaluated to determine their effectiveness in protecting underground cables from heavy truck loads using finite element method (FEM). The materials tested were: (1) sand backfill with asphalt concrete surface, (2) cement mortar backfill with self-compacting mastic asphalt surface, and (3) cement mortar backfill with asphalt concrete surface. Results showed that the proposed materials (cement mortar and self-compacting mastic asphalt) significantly reduced strain on the underground cable compared to traditional materials (sand and asphalt concrete). The strain values decreased from 713 microstrains with traditional materials to 333 microstrains with the proposed materials, representing a reduction of approximately 53%. The third combination, intended as a maintenance material, yielded an intermediate strain value of 413 microstrains, demonstrating its acceptability as a minitrenching material.
PURPOSES: This study developed a new backfill method for mini trenching. The purpose of this study is to evaluate the performance of the new backfill method in the field.
METHODS: In this study, asphalt pavement was created to verify mini trenching. Trenching test sections were then made in various trench widths in the asphalt pavement. The trench widths were 10 cm, 15 cm, 20 cm, and 25 cm. For the trenching test section, a general backfill method and new backfill method (2-layer SCB) were devised and applied. To evaluate the test section, a vehicle loading test and FWD (falling weight deflectometer) test were performed.
RESULTS : In the vehicle loading test, the duct vertical strain of the general section was up to 22 times larger than that of the 2-layer SCB section. According to the results of the FWD test, the D0 deflection of the 2-layer SCB section was smaller than that of the general section. These results indicate that 2-layer SCB has a good structural performance. With the use of FWD data, BLI (base layer index) and MLI (middle layer index) were analyzed. BLI is an indirect index for evaluating base layer. The BLI of the 2-layer SCB section was smaller than that of the general section, because the bottom layer (cellular mortar) of the 2-layer SCB is superior to that of the general section. MLI, on the other hand, is an indirect index for evaluating subbase layer. As the trench width increases, MLI increases. The MLI of the 2-layer SCB section was smaller than that of the general section. These results indicate that the damage is relatively greater when the trench width increases and that the 2-layer SCB strengthens a relatively weakened subbase. CONCLUSIONS: In this study, the performance of the 2-layer SCB was analyzed. The results of the study showed that good performance was obtained when 2-layer SCB was applied to a mini trenching section.