검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        미생물 연료전지는 신재생에너지로서 미생물이 유기물을 분해하는 신진대사 과정을 통해서 전기에너지를 생성한다. 각종 유기물이 풍부한 폐수를 이용하여 전력을 생산할 뿐 아니라, 슬러지 발생량도 감축할 수 있는 미래 전도유망한 친환경에너지이다. 하지만 이를 상용화하기 위해서는 전지 내부에서 발생하는 모든 저항요소들을 감소시켜 더 높은 전력밀도를 생산해야 될 필요가 있다. 예를 들어 신진대사가 활발한 미생물의 종류, 미생물과 전극의 효과적인 전자전달 과정, 전극의 재료 및 형태 등의 개선을 통하여 전력밀도를 높일 수 있다. 특히, 고분자 전해질 분리막의 성능개선은 산화, 환원전극조를 완벽히 분리할 뿐만 아니라, 환원전극으로의 수소이온 전도도를 높여 내부저항을 줄일 수 있는 핵심 요소이다.
        4,300원
        2.
        2013.11 서비스 종료(열람 제한)
        미생물전해전지(Microbial Electrolysis Cells, MECs)는 산화전극과 환원전극 사이에 적당한 전위차가 유지되도록 외부전원을 이용하여 전압을 인가함으로서 산화전극 표면에 부착 성장하는 전기적으로 활성을 가진 미생물에 의한 유기물 분해를 촉진시키고 수소나 메탄과 같은 유용물질을 생성시키는 장치이다. 따라서, 최근 미생물전해전지를 이용하여 유기성 폐수의 처리 및 에너지회수를 위한 연구들이 활발하게 진행되고 있다. 미생물전해전지의 운전과 성능에서 미치는 가장 중요한 인자 중의 한 가지는 전극이다. 지금까지 미생물전해전지 연구에 사용되어온 전극들은 대부분 전기전도성이 낮거나 부식이 문제가 된 경우가 많아 실용화에 걸림돌이 되고 있다. 여러 가지 전극재료들 중 흑연섬유직물(GFF; Graphite Fiber Fabric)은 내구성이 강하고 비표면적이 넓지만 전기전도성이 낮다는 단점이 있으며, 탄소나노튜브(Carbon Nanotube, CNT)는 전도성이 대단히 우수한 물질이지만 전극으로 성형, 가공하기 위한 제작기술이 없는 상황이다. 본 연구에서는 흑연섬유직물의 표면에 탄소나노튜브를 전기영동전착법(Electrophoretic deposition, EPD)으로 고정함으로서 내구성이 높고 비표면적과 전도성이 우수한 전극을 제작하기 위한 연구를 수행하였다. 탄소나노튜브를 흑연섬유직물의 표면에 전착시키기 위하여 먼저, 탄소나노튜브(1g)와 PEI(Polyethylenimine) 및 nickel pyrite(PEI1000-Ni500ppm, PEI500-Ni250ppm, PEI500- Ni500ppm)를 초순수 1L에 혼합한 다음 초음파를 이용하여 분산시켜 전기영동 용액을 준비하였다. 면적이 동일한 흑연섬유직물(Working Electrode: GFF)과 스텐리스망(Counter Electrode: stainless steel mesh)을 전기영동 용액에 평행하게 고정하고 두 전극 사이에 전압을 인가하여 전착시켰으며, 200℃에서 열처리를 하여 미생물전해전지용 전극을 제작하였으며, 전자현미경(Scanning Electron Microscope, SEM)을 이용하여 흑연섬유직물의 표면에 전착된 탄소나노튜브의 상태를 확인하였다. 준비된 전극들은 1cm² 크기로 잘라 four-point법으로 저항 측정하였다. 흑연직물섬유은 저항이 0.115Ω/cm이었으나, 탄소나노튜브가 표면에 전착된 흑연섬유직물 전극의 저항은 크게 감소하였다. 특히, 탄소나노튜브 및 PEI500-Ni250ppm으로 구성된 전기영동용액으로 탄소나노튜브를 표면에 전착한 흑연섬유직물 전극은 저항이 0.006Ω/cm로서 코팅하지 않은 흑연섬유직물 보다 전기전도성이 약 20배 증가하였다. 탄소나노튜브를 전기영동법으로 흑연섬유직물의 표면에 전착한 전극은 비표면적이 넓고 부식성이 강한 고전도성의 우수한 미생물전해전지용 전극으로 사용 할 수 있을 것으로 판단된다.