해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
리튬금속전지(LMB)는 매우 큰 이론 용량을 갖지만 단락(short circuit), 수명 감소 등을 야기하는 덴드라이트(dendrite) 가 형성되는 큰 문제점을 갖고 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS)에 graphene oxide (GO) nanosheet를 고르게 분산시킨 PDMS/GO 복합체를 합성하였고 이를 박막 형태로 코팅하여 덴드라이트의 형성을 물리적으로 억제할 수 있는 막의 효과를 이끌어내었다. PDMS의 경우, 그 자체로는 이온 전도체가 아니기 때문에 리튬 이온의 통로를 형성시켜 리튬 이온의 이동을 원활하게 하기 위하여 5wt% 불산(HF)으로 에칭하여 PDMS/GO 박막이 이온전도성을 가질 수 있도록 하였다. 주사전자현미경(scanning electron microscopy, SEM)을 통해 전면 및 단면을 관찰하여 PDMS/GO 박막의 형상을 확인하였다. 그리고 PDMS/GO 박막을 리튬금속전지에 적용하여 실시한 배터리 테스트 결과, 100번째 사이클까지 쿨롱 효율(columbic efficiency) 이 평균 87.4%로 유지되었고, 박막이 코팅되지 않은 구리 전극보다 과전압이 감소되었음을 전압 구배(voltage profile) 를 통해 확인하였다.
To remove SO2 from flue gas, a thin film nanocomposite (TFN) hollow fiber membrane was decorated with Nafion/TiO2 nanoparticles. Morphological and structural analyses of the TFN membranes were performed using FTIR, SEM, EDX, TEM, and AFM. The gas permeation experiments were performed with pure gases and a mixed gas within a pressure range of 1-3 bar and feed gas flow rate of 0.03-0.15 L/min. The obtained experimental results suggest that the addition of Nf/TiO2 nanoparticles improved the membrane performance by introducing sulfonate and hydroxyl functional groups to the membrane, and thus increased SO2 permeability and selectivity. The SO2 permeability was found to be 411-1671 GPU, while the ideal selectivities achieved for SO2/N2 and SO2/CO2 were 2928 and 72, respectively. Overall, an SO2 removal efficiency of 93% was achieved by using the Nf/TiO2 incorporated TFN membrane.
We report on the fabrication of a high performance reverse osmosis membrane based on a hydrophilic polyacrylonitrile support via an aromatic solvent-assisted interfacial polymerization process. The use of aromatic solvent (toluene or xylene) produced the membranes with unprecedentedly high NaCl rejection (~99.9%) and superior water flux, outperforming both the control membrane prepared using a conventional aliphatic solvent (n-hexane) and commercial membranes. The membranes fabricated using toluene or xylene had roof-like structures covering a thin and highly dense polyamide (PA) layer, which was induced by enhanced amine diffusion and the extended miscible layer resulting from the increased miscibility of aromatic solvent with water. The high performance of the membranes is attributed to thin and highly cross-linked basal PA layer.
Growing demands for reducing energy consumption have raised interest to design advanced materials for thin film composite (TFC) desalination membranes with high permselectivity and low fouling. Here, we synthesized a star-shaped polymer as a new building block material, which can be assembled into selective layer of the TFC membrane via a facile interfacial polymerization (IP). Star polymer with compact globular structure and high density amine functional groups enabled to fabricate higher permselectivity and lower fouling propensity membrane compared to commercial membranes. In addition, star polymer assembled TFC membrane can function as either nanofiltration or reverse osmosis membrane by simply adjusting IP process conditions, which cannot feasible in conventional materials, demonstrating remarkable versatility of our star polymer.
정삼투법을 이용한 해수담수화는 역삼투 공정에 비해 에너지 절감이 가능하여 해수담수화 차세대 기술로 주목받 고 있다. 막을 기반으로 하는 수처리 분야에서 분리 성능을 향상시키고 새로운 기능을 부여하기 위해, 고분자 매트릭스에 필 러인 나노물질을 삽입하는 박막 나노복합체 분리막(thin film nanocomposite, TFN) 개발에 대한 연구가 요구되고 있다. 본 연구에서는 딥 코팅(dip coating) 방법을 기반으로 한 다층박막적층법(Layer-by-layer, LBL)을 이용하여 산화그래핀(graphene oxide, GO)의 나노 적층구조를 제어하여, 정삼투 공정에서의 높은 안정성 및 높은 수투과도 및 염 제거, 낮은 염 역확산을 갖는 그래핀 나노복합체 분리막을 개발하고자 하였다. 정삼투 공정의 성능 향상을 위한 산화그래핀의 환원 반응시간과 LBL 딥 코팅 적층 수의 최적화를 통해, 수투과도 2.51 LMH/bar, 물분자 선택성 8.3 L/g, 염 제거율 99.5%를 갖는 나노복합체 분리막 을 개발하였다. 이는 상용화된 CTA FO 분리막보다 수투과도는 10배, 물분자 선택성은 4배 높게 향상되었으며, 염 제거율은 비슷한 수준으로 나타났다.
In this study, we present a unique surface modification method for a water desalination membrane to control the surface fouling via titanium dioxide (TiO2) nanopillar pattern imprinting. The patterned membranes showed significantly improved fouling resistance for both organic protein and bacterial foulants compared to the nonpatterned membranes. The hydrophilicity of TiO2 used as a pattern material affects the improvement of chemical antifouling resistance of the membrane. Fouling behavior was also interpreted in terms of the topographical effect depending on the relative size of foulants to the pattern dimension. Moreover, the computational fluid dynamics simulation intimates that the overall and local shear stress enhancement on the patterned surface could affect the foulant deposition behavior on the membrane.
In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in SiOxNy films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between SiO2 and Si3N4. The Au nanoparticles were embedded in the SiOxNy matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 μm thick Au:SiOxNy nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using SiO2 matrix. The use of SiOxNy matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.