검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 탄소 순환 관련 탄소 배출 시나리오를 통해 고등학교 학생들의 질량 보존의 개념을 확인하는 것이다. 이 연구를 위해 총 76명의 고등학교 2학년 학생들이 참여하였다. 연구 참여자들에게 2013년의 대기 중 이산화탄소 값이 2110년까지 ±15%의 변화로 450 ppm와 340 ppm으로 점진적으로 증가 또는 감소되는 두 개의 시나리오를 제시하였다. 시나리오에 따라 연구 참여자들에게 이산화탄소의 배출량 궤적을 그리게 한 후, 이를 설명하게 하였다. 그 결과는 다음과 같다. 대부분의 연구 참여자들은 탄소 배출 시나리오에 따른 이산화탄소 배출량과 자연적 순수 제거량에 대한 질량 보존의 추론보다는 이산화탄소 배출량은 앞으로도 계속해서 증가할 것이라는 결과를 나타내었다. 이는 연구 참여자들이 고등학교 지구과학 교과서의 탄소 배출과 관련된 그래프들 즉, 산업혁명 이후 최근까지의 인위적 이산화탄소 배출량 그래프, 대기 중 이산화탄소 농도 그래프, 평균 지구의 온도에 대한 그래프를 통해 이산화탄소 배출량이 계속해서 증가할 것이라는 패턴 매칭(pattern matching)을 생각하게 되었다는 것을 의미한다.
        4,200원
        2.
        2023.06 KCI 등재 서비스 종료(열람 제한)
        This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.
        3.
        2007.08 KCI 등재 서비스 종료(열람 제한)
        The objective of this work is the air quality modeling according to the scenarios of emission on complex terrain. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models - 3/CMAQ), respectively. The emission source was driven from the Clean Air Policy Support System of the Korea National institute of Environmental Research (CAPSS), which is a 1 km x 1 km grid in South Korea during 2003. In comparison of air quality fields, the simulated averaged PM10, NO2, and O3 concentration on complex terrain in control case were decreased as compared with base case. Particularly PM10 revealed most substantial localized differences by (18 ~ 24 μg/m3). The reduction rate of PM10, NO2, and O3 is respectively 18.88, 13.34 and 4.17%.
        4.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        Increasing carbon dioxide emissions from fossil fuel use and land-use change has been perturbing the balanced global carbon cycle and changing the carbon distribution among the atmosphere, the terrestrial biosphere, the soil, and the ocean. SGCM(Simple Global Carbon Model) was used to simulate global carbon cycle for the IPCC emissions scenarios, which was six future carbon dioxide emissions from fossil fuel use and land-use change set by IPCC(Intergovernmental Panel on Climate Change). Atmospheric CO2 concentrations for four scenarios were simulated to continuously increase to 600~1050ppm by the year 2100, while those for the other two scenarios to stabilize at 400~600ppm. The characteristics of these two CO2-stabilized scenarios are to suppress emissions below 12~13 Gt C/yr by the year 2050 and then to decrease emissions up to 5 Gt C/yr by the year 2100, which is lower than the current emissions of 6.3±0.4 Gt C/yr. The amount of carbon in the atmosphere was simulated to continuously increase for four scenarios, while to increase by the year 2050~2070 and then decrease by the year 2100 for the other two scenarios which were CO2-stabilized scenarios. Even though the six emission scenarios showed different simulation results, overall patterns were such similar that the amount of carbon was in the terrestrial biosphere to decrease first several decades and then increase, while in the soil and the ocean to continuously increase. The ratio of carbon partitioning to the atmosphere for the accumulated total emissions was higher for the emission scenario having higher atmospheric CO2, however that was decreasing as time elapsed. The terrestrial biosphere and the soil showed reverse pattern to the atmosphere.