This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.
All structures can not be perfect due to geometric or material initial imperfections. Initial imperfections are an important factor in determining the buckling mode and are known to be important factors in evaluating the actual buckling strength. The DNV-RP-C202 design standard limits the longitudinal stiffener spacing. However, the criteria for the stiffener spacing presented in DNV-RP-C202 is a guideline derived from the curved panel theory of perfect cross-sectional shape without initial imperfections. In this study, considering geometric initial imperfections, the transition point of stiffener spacing where longitudinal stiffeners affect the buckling strength of reinforced steel wind turbine tower is analyzed using finite element analysis program. The results of finite element analysis compared with theoretical results based on the perfect shape. As a result, a more reasonable stiffener spacing considering the initial imperfections was suggested.