Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. Of the SIPs, Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, the allowable shear load for panels was suggested to be at least 6.1kN/m.
PURPOSES: The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS: For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS: All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS: Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.
본 논문은 복합재료 패널로 보강된 철근 콘크리트 보의 휨 실험과 해석을 통하여 패널의 보강효과에 대하여 알아보고자 한다. FRP 복합재료 패널은 전통적인 재료인 강재와 콘크리트에 비해 단위 무게당 강도 및 강성이 크고 부식에 대한 높은 저항성, 절연성, 고내구성 및 낮은 열전도성 등 우수한 물성으로 유지관리 측면에서 매우 유리하여 최근 많은 연구가 이루어지고 있다. 따라서 본 연구에서는 범용 유한요소 해석 프로그램인 ABAQUS를 이용하여 복합재료 패널로 보강된 철근 콘크리트 보의 극한 하중을 예측하고 실험을 수행하여 그 보강효과에 대한 고찰하였다. 복합재료 패널은 복합재료 패널 층의 유리섬유직조 형태에 따라 LT, DB, DBT로 구분하고 복합재료 패널의 층 개수에 따라 2ply, 3ply로 구분하였다. 실험을 수행한 결과, 해석과 일치하였으며 복합재료 패널로 보강한 철근 콘크리트 보가 극 한강도 측면에서 효율적이었다는 결론도 얻었다.
복합재료가 신재생 에너지 산업 관련 구조물 및 해양 구조물에서 좀 더 신뢰도 있는 주 하중 부재로 사용되기 위하여 복합재료평판의 확률론적 비선형 초기 파단 하중과 원공과 곡률이 있는 복합재료판의 확률론적 비선형 좌굴 하중이 평가되었다. 주어진 설계 추출점에서의 확정론적 유한요소해석 결과를 바탕으로 반응면기법을 이용하여 한계상태면을 확률변수로 이루어진 2차 다항식으로 근사하였다. 또한, MPFP 근처에서 좀 더 정확하게 한계상태면을 근사하기 위하여 반복적 선형보간법이 적용되었다. 파괴확률을 평가하기 위하여 근사된 한계상태면 상에서 향상된 일계이차모멘트법과 몬테카를로법이 수행되었다. 마지막으로 파단에 영향을 주는 주요한 확률변수를 파악하기 위하여 변환된 확률변수에 대한 신뢰도지수의 감도를 계산하였다.