Background: Patients with chronic low back pain (CLBP) functionally adapt to decreased postural control due to impaired processing of sensory information. Standing postural control has been the focus of recent research in CLBP. Change in postural control may be a risk factor for CLBP, although available studies are not conclusive. Objects: This study aimed to identify the role of partial weight supported treadmill training (PWSTT) in improving balance, dysfunction, and pain in patients with chronic low back pain. Methods: The study included 22 patients with CLBP. Patients in the control group (n1=8) performed three 20 min stabilization exercise sessions per week, for 4 weeks. Patients in the full weight treadmill training group (n2=7) performed treadmill training for 30 min after stabilization exercise. Patients in the PWSTT group (n3=7) performed PWSTT with 20% of their body weight unloaded after stabilization exercises. By using the Biodex balance system, the dynamic balance abilities of the patients in the three groups were assessed in the quiet standing position under combined conditions of visual feedback (eyes open and closed) and platform stability (level 8). The Korean version of the Oswestry Disability Index and visual analogue scale score were used as the main measure. Results: The results of this study showed that dysfunction and pain were significantly improved in all groups. Although dynamic postural stability with eyes closed was significantly improved only in the PWSTT group (p<.05), no significant difference was found in the other groups. Conclusion: The results of this study indicate that PWSTT improved balance, dysfunction and pain in the patients with CLBP. Thus, this intervention is necessary for patients with CLBP with decreased postural control.
In this paper, the unit processes in the typical water treatment plant, which need to be expanded because the water demand is over the existing water treatment capacity in the near future, were carefully examined to upgrade the water treatment plant. The models were installed in the fields as a distorted model based upon the hydraulic similitudes. The models having the constant discharge ratio in the unit processes between the model and the prototype were installed as two units to compare the treatment efficiencies. The capacity of the individual unit, which is a model of the prototype of $250,000m^3/day$ capacity, was $24m^3/day$. In the mixing and flocculation experiments, the mixing intensity of flocculators G was selected as the main experimental item. The optimal mixing intensities G, which are 65/sec for experimental discharge of $1m^3/hr$ and 85/sec for experimental discharge of $1.3m^3/hr$, are identified based upon the comparison the relative turbidity removal efficiencies. Also, the outlet weir loading was selected as the main experimental item in the sedimentation process. Through the continuous experiments with the main experimental items of the mixing intensity of flocculators G and the outlet loading of the weir in the sedimentation basin, about 20% upgrading compared to the existing water treatment capacity was obtained.