검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        3.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.