본 연구에서는 고속도로를 대상으로 각각의 구간에 대한 선형유형을 구분하여 사고빈도모형을 개발하였다. 현재 사고빈도모형 부문의 연구는 주로 고속도로 구간 전체를 대상으로 한 연구가 대부분이기 때문에 거시적인 측면에서 사고빈도모형이 개발되었다고 할 수 있으며, 이에 따라 각각의 구간특성이 정확히 반영되지 않은 상태에서의 사고빈도를 예측하였다고 볼 수 있다. 본 연구에서는 이러한 문제점을 인식하여, 동질구간 분할법을 사용하여 고속도로의 평면선형을 직선부, 곡선부, 연속곡선부로 구분하였고, 이를 군집분석을 통하여 직선부와 곡선부의 유형을 구분하여 고속도로의 각각의 구간별 특성을 반영한 사고빈도모형을 구축하였다. 본 연구 결과는 고속도로 각 구간의 사고빈도를 예측하는데 있어 더 정확하고 합리적인 결과를 도출해 낼 것이라 판단한다.
본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.