In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).
In this study, to stabilize the heavy metal in the contaminated soils, the column leaching test based on rainfall and pH value was performed by using coal mine drainage sludge(CMDS): which was generated during electrical purification of abandoned coal mine wastewater. Four types of testing column were used in this study. That were the CMDS and the heavy metal contaminated soils well mixed in 0 wt%, 1 wt%, 3 wt% and 3 wt% layered column. According to the investigation, when the influent pH was 5.5∼6.2, there were no heavy metal elution at all conditions, and when the influent pH was 3∼3.3, the order of Cu, Zn, Pb, Cr elution concentration was 3 wt% M(mixed)<3 wt% S(separation)<1 wt% M<0 wt% and the average elution concentration was quite low, the value was 0.005 mg/L. Therefore, CMDS can used as new stabilizer of the heavy metal in the contaminated soils.
본 연구에서는 석탄 광산배수에 함유된 중금속을 부유선별로 제거하기에 앞서 부유선별 조건에 영향을 미치는 철, 망간, 알루미늄 이온의 침전특성을 알아보았다. Fe(III), Mn(II), Al(III) 이온을 NaOH와 반응시켜 1 h 동안 침전시키면 Fe(III)은 pH 5.0 이상에서, Mn(II)은 pH 10.0 이상에서 그리고 Al(III)은 pH 6.0~9.0의 범위에서 대부분 침전되어 여액에 1.0mgL-1 이하로 잔류되었다. Fe(III), Mn(II), Al(III)의 혼합 용액에 포수제인 올레인산나트륨을 첨가하였을 경우, 각각의 중금속 이온은 올레인산나트륨과 반응하여 불용성 염을 거의 형성하지 않았기 때문에 침전 부선법으로 광산배수에 함유된 중금속을 제거해야 하는 것으로 나타났다.