선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유 입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문 제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇 을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동 로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지 는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스 마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.
파랑중을 운항하는 선박은 항상 파도의 영향을 받아 운동을 하게 된다. 특히 컨테이너선과 같이 갑판위에 화물을 많이 운송하는 선박의 경우에는 여러 방향의 운동형태 중에서 횡동요가 화물의 안전에 가장 큰 영향을 미친다. 이러한 선박에서는 컨테이너의 이동 및 전도를 방지하기 위하여 Securing과 Lashing을 하게 되는데, 적절한 시스템의 선정을 위하여 각각에 작용하는 하중들의 정확한 평가가 요구되고 있다. 따라서 본 논문에서는 갑판적 컨테이너들의 연결부에 작용하는 Securing 하중과 Lashing 와이어에 작용하는 힘에 대한 계산식을 유도하고, 몇 가지 Lashing 패턴에 대하여 계산을 수행하였다.