검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni–Cr–Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol–gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni–Cr–Al foam without cracks or spallation. The measured compressive yield strengths are 2–3 MPa at room temperature and 1.5–2.2 MPa at 750oC regardless of sample size. The specimens exhibit a weight loss of up to 9–10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.
        4,000원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 LNG 추진선박에서 발생하는 BOG(boil-off gas)를 이용하여 수소를 생산하고 수소 연료전지 시스템을 보조엔진으로 적용한 개질공정의 특성에 대한 연구를 수행했다. 연구를 위해 BOG 수증기 개질공정을 UniSim R410 프로그램을 이용해 공정설계하고, 개질기의 출구온도와 압력, SCR(steam carbon ratio)에 따른 생성물의 분율과 반응물의 소모량을 산출하였다. 연구 결과 개질온도가 890℃일 때 메탄의 반응률이 100 %였으며, 최대 수소 생산량을 보였다. 또한 개질압력이 낮을수록 반응 활성도가 높았다. 하지만 그 이상의 온도가 되면 역반응의 우세로 인해 수소의 생산량은 감소하게 되고, 물과 이산화탄소의 양은 증가했다. 또한 SCR이 증가할수록 수소 생산량도 증가했으나 요구되는 에너지 소비량도 비례하여 증가했다. SCR이 1.8일 때 수소분율이 가장 높았으나 코킹방지를 위해 SCR이 3에서 운전하는 것이 최적 운전범위임을 확인했다. 그리고 개질압력이 낮을수록 발생되는 이산화탄소의 양은 증가했으며, 냉각 및 액화를 위해서는 이산화탄소 발생량을 기준으로 42.5 %의 LNG 냉열이 요구됨을 알 수 있었다.
        4,000원
        4.
        2018.05 구독 인증기관·개인회원 무료
        수소를 연료로 사용하는 PEMFC는 고효율⋅출력밀도를 나타내며, 짧은 시동시간, 우수한 응답특성에 따라 현지설치형 발전기술로 사용되며, 이를 위한 고효율 연료처리장치가 필수적이다. SMR반응은 연료당 고회수율을 때문에 경제성이 우수하며, 전환율 확보를 위해 700°C, 20 bar 이상의 운전조건에서 수행되며, WGS, PSA의 후단공정을 통해 수소를 생산한다. 분리막 개질기를 이용한 SMR반응은 분리막이 수소를 제거함에 따라 반응효율 증진, 공정온도 저감, 후단공정 배제를 할 수 있어 공정구성 및 경제성이 우수하다. 본 연구에서는 팔라듐분리막 개질기를 사용하여 550°C, 5 bar에서 SMR반응을 통해 수소를 생산하였으며, 개질된 가스의 CO 농도를 최소화하여 고온 PEMFC용 연료처리장치를 개발하였다.
        5.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Development and performance evaluation of the hydrogen generator by autothermal reforming process for emergency PEM fuel cell using methanol from process waste were carried out. Supply of gaseous hydrogen has been a technical barrier for its wide application. As a result, conventional reformer has either a separate heat source such as a catalytic combustor or a parallel process in the same reactor to generate heat. The later device is called ATR (Autothermal reforming). Typical product gas of ATR still contains a large amount of carbon monoxide that poisons electro-catalyst of the MEA. In the present study, we used the decomposition of hydrogen peroxide as a parallel exothermic reaction in the same reactor as the reformer. The decomposition of hydrogen peroxide releases water vapor and gaseous oxygen with enormous heat. The heat sustains the reforming reaction and the oxygen is used to recombine the carbon monoxide by oxidation. By parametric study, at the condition of 200oC and the rate of methanol to 40% of hydrogen peroxide is 4 to 1, the Carbon monoxide contents are reduced by less than 800 ppm. Using the present concept we could reduce the concentration of carbon monoxide in the product gas of the reformer by more than 80%. At that carbon monoxide contents, we can be possible to load the methanol-hydrogen peroxide ATR system without any devices.
        6.
        2014.11 서비스 종료(열람 제한)
        매립가스는 유기물의 소화로 발생되는 복합성 가스이며 주성분인 메탄(CH4), 이산화탄소(CO2) 이외에 황화수소(H2S), 암모니아(NH3), 할로겐 탄화수소, 휘발성유기규소화합물(VMSs)을 포함한다. 매립가스의 구성물질 중 황화수소는 주요 악취물질로 반응성이강하며 휘발성유기규소화합물은 매립가스 내 불순물로 장치 부식의 원인이 될 수 있다. 따라서 매립가스의 효율적인 자원화를 위해서는 매립가스 내 황화수소 및 휘발성유기규소화합물의 전처리가 필요하다. 본 연구는 황화수소와 휘발성유기규소화합물의 전처리공정으로서 흡착공정을 개발하고, 우선 황산철용액으로 개질된 활성탄을 제조하고 개질 활성탄의 흡착특성을 평가하고자 하였다. 실험에 사용된 흡착제는 식물계 활성탄에 황산철(FeSO4・7H2O)용액으로 첨착하였다. 흡착 방법으로는 흡착제가 채워진 유리재질의 흡착관에(∅10×150 mm) 황화수소 및 휘발성유기규소화합물 중 D4를 질소(99.999%)와 함께 0.3 L/min으로 유입시켜 유출농도가 유입농도의 5%로 배출 될 때를 파과점으로 하여 측정하였다. 황화수소는 초기농도 1%에서 질소와 혼합하여 3,333 ppm으로 유입되었으며, 휘발성유기규소화합물인 D4는 650 ppm으로 유입되었다. 황화수소는 10 ppm까지 황화수소 센서를 이용하여 측정하였고 이후 GC-PFPD로 분석하였으며 휘발성유기규소화합물인 D4는 GC-FID를 이용하여 분석하였다. 개질된 활성탄의 비표면적은 1205.4 m²g-1로 비개질 활성탄의 비표면적인 1111.3 m²g-1 보다 큰 값을 보여주었다. 또한, 주사형 전자현미경 분석을 통해 입경크기 및 표면기공을 확인한 결과 개질된 활성탄의 표면기공이 1 μm 이하부터 8 μm 까지 다양하게 분포되어 있었다. 개질된 활성탄의 황화수소 및 휘발성유기규소화합물의 흡착능은 각각 0.256 g/g, 0.413 g/g으로 비개질 활성탄의 흡착능인 0.023 g/g에 비해 매우 높은 흡착능을 보여주었다. 개질된 활성탄의 첨착된 철에 의한 화학흡착과 제조과정에서 형성된 활성탄 표면의 관능기가 황화수소 및 휘발성유기규소화합물의 흡착에 영향을 주는 것을 판단된다.