검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.
        5,400원
        2.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        기후변화로 인한 수자원 전망은 배출 시나리오, 전지구적 순환모형, 상세화 기법, 수문 모형 등 여러 전망 단계를 거쳐 이루어지며, 각 단계는 수자 원 전망의 총 불확실성의 원천이 된다. 몇몇 연구를 통해 개별 전망 단계의 총 불확실성에 대한 상대적인 기여를 계량화하는 방법이 제안되었으며며, 이러한 분석을 불확실성 분해라고 한다. 불확실성 분해 분석은 큰 불확실성을 발생시키는 단계를 진단하고, 이를 반영한 불확실성 저감 계획을 수립할 수 있게 한다. 전망 단계 간의 교호작용은 불확실성 분해 시 고려되어야 하는 중요한 문제 중 하나이다. 본 연구는 교호작용 효과로 인한 불 확실성을 계량화하고 이를 불확실성 분해에 반영하는 새로운 방법을 제안한다. 제안한 방법은 전망 단계별 불확실성을 주효과와 교호작용 효과를 모두 고려하여 계량화함과 동시에 총 불확실성에서 개별 전망 단계가 차지하는 상대적인 비중을 제시할 수 있다는 장점이 있다. 제안한 방법을 충 주댐 유량 전망의 불확실성 분석에 적용하였다. 충주댐 유역의 불확실성 분석 결과 여름과 겨울 두 계절 모두에서 교호작용 효과의 불확실성은 주 효과의 불확실성에 비해 그 크기가 작은 것으로 나타났다. 교호작용 효과를 고려하여 불확실성을 분해한 결과 배출 시나리오, 전지구적 순환모형, 상세화 기법, 수문 모형의 네 단계 중 여름철은 전지구적 순환모형의 불확실성이, 겨울철은 상세화 기법의 불확실성이 가장 큰 것으로 분석되었다.
        3.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        전지구적으로 발생하는 기후변화로 인해 수자원의 시공간적 변화를 야기할 것으로 전망된다. 기후변화에 따른 수자원의 영향을 정량적으로 평 가하고 그에 적응할 수 있는 수자원 관리 방안이 필요하다. 하지만 영향평가 시 많은 불확실성이 발생하기 때문에 평가 시 발생하는 불확실성을 정 량적으로 평가할 수 있는 기술 개발이 요구된다. 본 연구에서는 기후변화에 따른 수자원 영향평가 시 발생하는 불확실성을 단계별로 평가할 수 있 는 기법을 개발하였으며, 지역기후모형, 통계적 후처리기법, 수문모형에 따른 불확실성을 분석하였다. 평가를 위해 5개 지역기후모형, 5개 통계적 후처리기법과 2개 수문모형을 이용하였다. 불확실성의 요인을 분석한 결과 유출량의 경우 겨울철을 제외한 모든 계절에서 RCM의 불확실성이 29.3~68.9%로 가장 큰 비중을 차지하는 것으로 나타났으나, 겨울철은 수문모형의 불확실성이 46.5%를 차지하는 것으로 나타났다. 증발산량 의 경우 가을철을 제외하고 수문모형의 불확실성이 28.5∼65.1%로 가장 큰 비중을 차지하였다. 따라서 이수기는 수문모형에 더욱 영향이 큰 것 으로 나타났으며, 홍수기는 기후 모델링 부분의 영향이 큰 것으로 사료된다. 이 기법을 통해 특정 RCM이나 통계적 후처리기법, 수문모형 등의 선 정에 따라 전체 불확실성이 어떻게 변화될 수 있는지를 분석할 수 있으며, 이를 통해 불확실성을 저감할 수 있는 방안을 마련할 수 있을 것으로 기대 된다.
        4.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 GCM 및 유출모형의 불확실성을 고려하여 기후변화에 따른 미래 한반도 수자원의 변화를 전망하고, 그 결과에서 나타나는 불확실성을 평가하고자 하였다. 온실가스 배출시나리오와 GCMs의 불확실성을 고려하기 위해 IPCC AR4에 적용되었던 3개 시나리오(A2, A1B, B1)에 대한 13 GCMs 결과를 이용하였으며, 유출모형 구조 및 증발산량 산정방법에 따른 영향을 고려하기 위해 PRMS, SWAT, SLURP 모형을 선정하였고 각 모형별로
        5.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 SRES A2 시나리오의 GCM 결과를 역학적으로 다운스케일한 해상도 27km27km 자료를 이용하여 국내 139개 유역에 대해 기후변화에 따른 수자원의 시공간 변화를 평가하고 결과를 제시하였다. 유출량의 변화는 유역에 따라 그리고 분석기간에 따라 변화율에서 차이가 나타났다. 기간별로 차이는 있으나 한강과 한강동해안에 위치한 유역에서는 연평균유출량이 증가하고 나머지 유역에서는 감소할 것으로 분석되었다. 계절별 분석에서는 가을과 겨울철 유출