Total water pollution load management(TWPLM) seeks to harmonize conservation and development by allowing regional developments to be carried out in an eco-friendly manner and within the scope of achieving the desirable water quality. Water pollutant sources are managed so as to keep the total amount of pollutants in public watersheds within a certain level or total allowance in accordance with target water quality goal. With relation to the basic guideline under the Special Act on the Water Resources Management and Community Support for Watersheds, the load from the land should be determined by the classification of rainy and dried season respectively. Objective loads of abatement applied in the 1st planning period(2004∼2010) are set up standards by low flow condition(Q275) without considering the change of flow, while allowable wasteloads are estimated by the criteria of daily mean precipitation 10 mm, as critical standard for the division of surface runoff load. Even though the standard flow conditions to meet the goal of water quality at the end of unit watershed are low flow, but it might be considered to set up drought flow condition(Q355) for the improvement of water quality. Also the objective loads for abatement to meet the target water quality should be calculated without the effect of non-point sources from the land.
For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.