기후 변화로 인해 해수면 상승과 폭풍해일 발생 빈도가 증가하면서, 해안 지역에서의 재난 위험이 심화되고 있다. 본 연구는 NOAA의 GFS(Global Forecast System) 모델과 일본 기상청의 JMA-MSM(Japan Meteorological Agency Meso-Scale Model) 데이터를 기반으로 딥 러닝 기술을 활용하여 폭풍해일 예측 알고리즘을 개발하고, 두 모델에서 제공하는 대기 데이터를 입력 변수로 사용하여 예측 성능을 비 교하는 것을 목표로 한다. CNN(Convolutional Neural Network), LSTM(Long Short-Term Memory), Attention 메커니즘을 결합한 모델을 설계하고, 조위관측소의 관측 자료를 학습 데이터로 사용하였다. 과거 한반도에 직접적인 영향을 미쳤던 네 개의 태풍 사례를 통해 모델 성능을 검 증한 결과, JMA-MSM 기반 모델이 GFS 기반 모델에 비해 서해, 남해, 동해에서 각각 평균 RMSE를 0.34cm, 0.73cm, 1.86cm, MAPE를 0.15%, 0.36%, 0.68% 개선하였다. 이는 JMA-MSM의 고해상도 자료가 지역적 기상 변화를 정밀하게 반영했기 때문으로 분석된다. 본 연구는 해안 재난 대비를 위한 폭풍해일 예측의 효율성을 높이고, 추가 기상 데이터를 활용한 향후 연구의 기반 제공이 기대된다.
한반도 남서해안에 위치한 흑산도 고층관측이 2003년 6월 1일부터 실시되고 있다. 이러한 흑산도 관측자료에 의한 수치예보개선효과를 보기 위하여 광주의 관측자료와 비교 분석하였다. 분석에는 MM5를 기본으로 제작한 호남지방 고밀도 예측시스템을 이용하였다. 먼저 지표면 마찰과 현열플러스의 차이에 의하여 광주와 흑산도의 바람장과 온도장은 다르게 나타났으며, 광주와 흑산도의 자료를 모두 동화시킨 수치예측 바람장과 기상장이 관측과 제일 잘 일치하였다. 강수면에서 비록 강수량은 과소평가를 하고 있으나, 강수시간과 강수구역은 흑산도자료를 포함하여 자료동화를 시킨 경우 관측과 유사하게 나타났다.