기후 변화로 인해 해수면 상승과 폭풍해일 발생 빈도가 증가하면서, 해안 지역에서의 재난 위험이 심화되고 있다. 본 연구는 NOAA의 GFS(Global Forecast System) 모델과 일본 기상청의 JMA-MSM(Japan Meteorological Agency Meso-Scale Model) 데이터를 기반으로 딥 러닝 기술을 활용하여 폭풍해일 예측 알고리즘을 개발하고, 두 모델에서 제공하는 대기 데이터를 입력 변수로 사용하여 예측 성능을 비 교하는 것을 목표로 한다. CNN(Convolutional Neural Network), LSTM(Long Short-Term Memory), Attention 메커니즘을 결합한 모델을 설계하고, 조위관측소의 관측 자료를 학습 데이터로 사용하였다. 과거 한반도에 직접적인 영향을 미쳤던 네 개의 태풍 사례를 통해 모델 성능을 검 증한 결과, JMA-MSM 기반 모델이 GFS 기반 모델에 비해 서해, 남해, 동해에서 각각 평균 RMSE를 0.34cm, 0.73cm, 1.86cm, MAPE를 0.15%, 0.36%, 0.68% 개선하였다. 이는 JMA-MSM의 고해상도 자료가 지역적 기상 변화를 정밀하게 반영했기 때문으로 분석된다. 본 연구는 해안 재난 대비를 위한 폭풍해일 예측의 효율성을 높이고, 추가 기상 데이터를 활용한 향후 연구의 기반 제공이 기대된다.
우리나라 해안지역은 매년 평균 3개의 태풍으로부터 직·간접적인 영향을 받아왔으며, 태풍에 의한 폭풍 해일은 해안지역에 많은 피해를 주는 자연현상 중 하나이다. 또한 기후 변화로 나타나는 해수면 및 해수 온도 상승으로 인해 태풍 강도의 증가로 폭풍해일에 의한 피해가 필연적으로 증가할 것으로 예상된다. 본 연구는 한반도 태풍 내습 시 확률적 해일고 추산을 위한 초기 연구로서, 해양·기상 연계 모형인 SLOSH(Sea, Lake, and Overland Surges from Hurricanes) 모델을 이용하여 과거 한반도를 내습한 태풍 매미(MAEMI, 0314)와 볼라벤(BOLAVEN, 1215)의 해일고 및 최대 해일고 발생 시간을 확인하였다. SLOSH 모델을 이용하여 예측된 해일고는 국립 해양 조사원에서 제공하는 실측 자료와의 비교 및 검증을 통해 유용성을 입증하였다.
최근 정확한 대기오염 및 황사이동예보를 위하여, 대기역학모형과 확산모형의 결합을 통한 수치실험이 실시되고 있다. 본 연구에서는 3차원 대기역학모형( RAMS)과, 확산모형(PDAS)에 사용되는 기상장의 시간분해능이 대기확산장에 미치는 영향을 조사하였다. 그리고 여러 가지 시간분해능의 기상자료를 확산모형에 적용하여 황사입자의 분포 특성과 차이를 수치실험을 통하여 비교분석하였다.
수치실험 결과 다음과 같은 결론을 얻을 수 있었다.
1) RAMS에 의한 바람장 예측결과, 지면과 상층의 바람장이 동조될 수도 있고, 그렇지 않을 수도 있다. 상하층의 바람장이 동조되지 않을 경우 황사의 예측은 황사의 상승고도예측과 밀접하게 관련된다.
2) 황사의 연직분포에서 초기에는 상층의 황사가 먼저 이동을 하게 되며, 시간이 지남에 따라 하층의 황사도 이동을 시작한다. 본 연구에서는 최고 고도 3.9km 까지 도달한다.
3) 수치실험에서 초기(24시)의 경우, 시간해상도에 따른 확산의 차이는 크지 않다. 그러나 시간이 경과함에 따라 입자확산분포의 차이가 크게 나타난다.
4) 3시간 이하의 높은 시간해상도의 경우, 입자분포의 차이가 크지 않다. 그러나 6시간보다 간격이 큰 자료를 이용할 경우, 황사입자분포의 양적측면에서 큰 차이를 나타내며, 밀도 분포의 차이에 일정한 경향성을 가진다
5) 입력 바람장의 시간분해능이 작은 경우 즉 입력시간 간격이 큰 경우, 황사입자는 지역의 주풍성분(동아시아의 경우 편서풍)을 따라 분포한다. 그러나 시간분해능이 큰 경우, 중규모적인 기상현상을 잘 재현되며, 여기에 의하여 주풍의 직각성분인 남북성분의 효과가 크게 나타난다.
이상의 결과에서 확산모형의 입력자료로 사용되어지는 바람장은 보고자하는 기상현상을 잘 표현할 수 있는 시간분해능 내의 자료를 이용하여야하며, 이를 무시할 경우 입자의 농도예측에 많은 오차를 발생시킬 수 있다. 그러므로 확산예보에 앞서 시간분해능에 관한 검증이 필요하다고 판단된다.