본 연구는 AWS 관측강우정보를 이용하여 실시간 유량예측을 수행할 경우 적용가능한 예측선행시간 및 정확도를 평가하고자 하는데 그 목적이 있다. 이를 위해 남한강 상류유역을 대상유역으로 선정하였으며 2006∼2009 홍수기간에 대해 SURF 모형을 구축하였다. 관측유량 자료동화 수행 유무에 따른 모의유량은 관측유량을 잘 모의하며 유효성지수를 이용하여 자료동화 효과를 분석한 결과에서 충주댐 32.08%, 달천 51.53%, 횡성 39.70%, 여주 18.23%가 개선된 것으로 나타났다. 첨두유량 발생시간 이전 가상의 현재시점까지의 AWS 관측강우정보를 이용하여 유량예측 적용성을 평가한 결과 허용오차 20% 범위 내에서 첨두유량은 충주 11시간, 달천 2시간, 횡성 3시간, 여주 5시간, 유출용적은 충주 13시간, 달천 2시간, 횡성 4시간, 여주 9시간 이내에서 예측이 가능한 것으로 나타났다. 따라서 유역의 지체효과로 인해 관측강우만을 이용하여 적정 예측시간에 대해서 실시간 첨두유량 예측이 가능할 것으로 판단된다.
본 연구에서는 연속형 강우-유출모형과 앙상블 칼만 필터 기법을 연계하여 실시간 하천유량 예측모형을 개발하고 자료동화로 인한 정확도 개선 정도를 평가하고자 한다. 대상유역은 안동댐 상류유역을 선정하고 2006.7.1~8.18과 2007.8.1~9.30의 홍수기간에 대해 평가를 수행하였다. 자료동화를 위한 모형 상태변수는 유역의 토양수분과 저류량 및 하도 저류량을 선정하였으며 하류 댐 지점의 관측유량을 이용하여 상태변수를 갱신하도록 모형을 설계하였다. 상태
평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MD
본 연구에서는 단기 예측강우를 활용하여 실시간 유량을 예측할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 저류함수(SFM) 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하였다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과 RDAPS 및 관측 강수량 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필