본 논문에서는 아이소-지오메트릭 형상 최적설계 기법에서 얻은 CAD 정보를 직접 활용하여, 3D 프린터를 활용한 실험적 검증을 위한 시편을 제작하였다. 유한요소법에서는 요소망에 내재하는 기하학적인 근사가 응답과 설계민감도 해석에서 정밀도 문제를 발생시킨다. 더욱이 유한요소 기반 형상 최적화 과정에서는 CAD와의 정보교환이 필수적이나 그 과정에서 최적설계 정보의 손실이 발생할 수 있다. 아이소-지오메트릭 기법은 CAD에서 사용된 동일한 NURBS 기저함수와 조정점을 사용하므로 법선벡터와 곡률과 같은 엄밀한 기하학적 정보를 응답해석과 설계민감도 해석에 사용할 수 있다. 또한 최적설계 과정에서 CAD와 정보교환 없이 복잡한 형상을 손쉽게 변경할 수 있다. 그러므로 최적의 설계의 재료량을 실험적 검증을 위한 시편제작에 엄밀하게 반영할 수 있다. 굽힘 하중을 받는 단순지지 구조물에 대한 최적설계 및 실험적 검증을 통해 최적형상이 초기 형상에 비해 더 큰 강성을 가지며 실험결과와 수치 해석결과가 매우 잘 일치함을 보였다. 또한 인장력을 받는 유공판에 대한 형상 최적설계를 수행하였으며, 비접촉식 3차원 변형 측정 장치를 이용하여 초기설계에 비해 최적설계에서 구멍주변에서의 응력집중 현상이 완화됨을 확인하였다. 따라서 수치적인 방법을 활용한 최적설계가 실제 구조물에 대한 실험에서도 유효함을 입증하였다고 할 수 있다. 또한, 아이소-지오메트릭 최적설계 방법론이 기존의 유한요소법에 비해서 최적설계 결과를 제작하여 활용하는데 있어서도 훨씬 효율적이고 엄밀한 방법임을 보였다.
본 논문에서는 아이소-지오메트릭 해석법을 이용하여 고주파수를 가지는 파워흐름 문제에 대하여 연속체 기반 형상 최적설계를 수행하였다. 아이소-지오메트릭 기법을 형상 최적설계에 적용하면, CAD 기하 모델링에서 쓰이던 NURBS 기저 함수가 직접 쓸 수 있기에 정확한 기하학 정보가 수치계산에서 고려되고, 이에 따라 형상 최적설계 관점에서 볼 때, 전통적인 유한요소법에 비해 향상되고 부드러운 설계 섭동량을 가지는 설계 매개화가 가능하게 된다. 즉, 정확한 기하 모델이 응답 해석과 설계민감도 해석에 쓰이게 되고, 이에 따라 설계영역 전체에서 법선 벡터와 곡률이 연속적으로 되게 된다. 결과적으로 정밀한 민감도 해석이 가능하게 된다. 몇 가지 수치예제를 통하여 개발된 아이소-지오메트릭 설계민감도가 유한차분 설계민감도와 비교하여 정확성을 확인할 수 있었으며, 형상 최적설계 문제를 통해서 본 방법론을 적용하여 검증하였다.