ROK Navy Landing Ship Fast(LSF-II) is equipped with special equipment that is not compatible with other combat ships due to special missions. So there are almost no maintenance capabilities except for simple repair parts replacement and maintenance parts. The researcher determined that the way to solve these problems was to apply Performance Based Logistics (PBL), and reviewed the cases of PBL applications abroad and domestically. To confirm the current maintenance capability, we visited LSF-II operation unit to identify maintenance capabilities for each mounted equipment, and interviews with operators and maintenance practitioners confirmed the limitations of outsourcing maintenance and the need to apply PBL. In order to analyze the effect of PBL application, the measure of effectiveness and measure of performance were selected based on the opinions of LSF-II operation/maintenance practitioners and PBL experts and the practical experience of this researcher. A survey was conducted on operation/maintenance practitioners and professional personnel. Based on the survey results, the effect of applying PBL was analyzed using the AHP technique, and an efficient PBL application plan was proposed for LSF-II.
The Korean military has sought to build an all-round military force against the national and international security environment and future asymmetric threats as well as the military threats it faces. However, while raising the need for timely electrification, there are few cases of quantitatively evaluating the loss when electrification is delayed, making it difficult for our military to provide a logical basis to support the importance of the electrification period. Therefore, through this study, we tried to analyze the index of loss cost that can support the need for timely electrification with logical and quantitative data and present it as a logical basis. To this end, the loss cost was calculated in terms of combat efficiency, equipment utilization rate, and maintenance requirements, which can be quantitatively calculated based on “combat readiness,” a general impact on the military in case of delayed timely electrification.
The 4th Industrial Revolution and the continuous development of Science and Technology have also required a speedy business promotion method in the defense industry. Advanced countries including the United States are already boldly innovating the existing high-cost and long-term acquisition system with the highest priority in weapons development to cope with the military rise of Russia and China. The Ministry of National Defense and the Defense Acquisition Program Administration have also recently introduced a quick acquisition system and are applying it to business promotion. In addition, some small-scale projects and weapons systems are being reorganized so that they can be managed by the units demanding them. After an organizational diagnosis of the Project Acquisition Group by the Ministry of National Defense in 2020, it has been reassigned as a subordinate unit of the Army Logistics Command from a direct unit managed by the Army HQ. As a result, problems such as work conflict or redundancy have been identified. In addition, a system has been implemented to shorten the acquisition period by applying a rapid acquisition program in the field of weapons systems by benchmarking the rapid acquisition program of advanced countries. The force support system project process will also need to introduce such a quick acquisition system. In addition, the Ministry of National Defense is considering ways to delegate some weapon systems to each military, which will then carry out tasks ranging from requirements determination to project management. Accordingly, it is now time to expand the organization for the management of the Army's weapons system acquisition project. Therefore, in this paper, the Army Project Acquisition Group was analyzed on its organization, acquisition procedures, and cooperation systems, with presentations of development plans for each field.
For the past 70 years, an intense rivalry has persisted on the Korean Peninsula, and North Korea's nuclear and missile threats are becoming increasingly imminent. Facing a shortage of military resources, South Korea has pursued a national defense reform, significantly reducing the number of units and troops while focusing on ground forces. However, North Korea's strategic objective of unifying South Korea through surprise attacks, prompt responses, and combined nuclear and missile assaults remains unchanged. The central issue in this context revolves around determining the appropriate size of the Korean military's standing forces. This study employs the concept of net assessment as a novel method to ascertain the optimal size of the Korean military. Threats, strategic objectives, doctrine, and unit rotations are simultaneously considered from the enemy's perspective. In anticipation of security risks on the Korean Peninsula, an acceptable troop size will be proposed using the net assessment approach to calculate the appropriate standing force size.
본 논문에서는 CAD 시스템에서 사용하는 NURBS 기저함수를 사용하는 아이소-지오메트릭 해석(Isogeometric analysis) 방법과 기 하학적으로 엄밀한 빔 모델링(geometrically exact beam model)을 활용하여 회전과 병진 운동이 결합된 새로운 형태의 메타물질 (metamaterial)에 대한 해석을 진행하였다. 이차원 셀 구조는 자유형상변환(Free-form deformation) 법과 적절한 내삽법(Interpolation) 을 통해 원통 위에 입혀졌다. 원통의 치수와 셀 개수가 비틀림 각도에 미치는 영향이 매개변수 연구(parametric study)를 통해 확인되었 다. 비틀림과 병진 운동이 결합된 구조의 메커니즘에 대해 수치 예제를 통해 알아보았다.
Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.
K1A1 tank commander’s primary thermal sight is a device that enables tank commanders to detect, identify, aim and track the target by observing targets in all directions during day, night and in situations of smokescreen and fog through 360° rotation independent from the gunner’s primary thermal sight and stabilizing the line of sight even under the vibrations occurring when the tank is standstill and moving. The main function of this device is to detect and process visible and thermal images and deliver the final images to the tank commander. One of the core parts to that end is the observation window (daytime/ thermal image window). This core part is mounted at the entrance of the optical path for observing the target and plays the role of making visible light during the daytime and infrared light during the night pass through the target and transmitting the resultant images to the internal optical system of the tank commander’s primary thermal sight. Such core parts have been selected as depot maintenance items so that they are replaced by new parts instead of being recycled when they are subjected to maintenance in most cases. That is, the military budget is wasted because such parts are replaced by new parts despite that they can be recycled for maintenance. Therefore, this study proposed a mounting tool for polishing and coating observation windows (daytime and thermal image window) using planar polishing equipment and DLC (Diamond-Like Carbon) coating equipment. In addition, this study presented an amendment (proposal) of the Depot Maintenance Work Request (DMWR) already published to verify the performance of recycled products including the establishment of inspection standards for recycling processes.
밴드갭은 기계적 파동의 전파가 금지되는 특정 주파수 범위를 의미한다. 본 연구는 경사도 기반의 설계 최적화 방법을 사용하여 낮은 가청 주파수 범위에서 밴드갭을 갖는 3차원 켈빈 격자를 설계하는 것을 목적으로 하고 있다. 블로흐 이론을 이용하여 무한주기 격자에서의 탄성파 전파를 해석하고, 기하학적으로 엄밀한 빔 이론에서 선형화를 통해 얻은 전단 변형 가능한 빔 모델을 사용하여 격자 구조 연결선을 모델링하였다. 주어진 격자 구성에서 중립 축 및 단면 두께를 B-spline 함수를 이용한 아이소-지오메트릭 매개화를 통해 설계 변수로 정의하고, 격자 구조의 밴드갭의 크기를 극대화하는 최적 설계를 수행하였다.
It is difficult to apply the ram target value setting methods of the conventional weapon system to a large combined weapon system such as a submarine. The current study presents the case of weapon system development and suggests a new way to improve the setting and verification methods of ram target value of the submarine through critical review of the case. The submarine, unlike other weapon system, has an operating environment, which reaches all over the world, and its operating and maintenance conditions are different from others. Therefore, the ram target value of the submarine should be set and verified on the basis of mission essential equipment and mission critical equipment, not of all the constituent components.
K-1계열 전차의 전차장 열상조준경은 주야간 및 연막, 안개 등의 상황에서 포수조준경과 독립적으로 360°회전을 통한 전 방향의 표적 관측과 전차가 정지 및 기동 간 발생하는 진동에서도 조준선을 안정화하여 전차장이 표적의 감지, 식별, 조준 및 추적 할 수 있는 장치이다. 이 장치 의 주요기능 중 하나인 가시상 및 열상을 감지하고 처리하여 최종 영상을 전차장에게 전달하는 것으로 이를 위한 핵심 부품은 주간 및 열상 창이다. 이 핵심 부품은 목표물을 관측하는 광행 로 입구에 장착되어 있으며, 목표물에 대해서 주간에는 가시광, 야간에는 적외선을 통과하여 전 차장 열상조준경의 내부 광학계통으로 전달하는 기능을 수행한다. 이와 같은 핵심부품에 대한 정비는 창 정비 품목으로 선정되어 대부분 재생정비가 아닌 신품 교환 정비를 하고 있는 실정 이다. 즉, 재생정비가 가능한 품목임에도 불구하고 신품교환에 따라 군 예산이 낭비되고 있다. 따라서 본 연구는 평면연마장비와 DLC(diamond-like carbon) 코딩장비를 활용하여 주간 및 열상 창을 연마·코팅할 수 있도록 장착치구를 개발하였다. 또한 재생공정에 대한 검사기준 정립을 포함하여 재생품에 대한 성능검증을 위해 기 발간된 창 정비작업요구서(DMWR) 수정(안)을 제시 하였다.
본 논문에서는 변형에 의해 유발된 패턴변화(pattern transformation)에 기반하여 압축(compression)과 인장(tension) 하중 모두에서 음의 포아송 비(negative poisson’s ratio)를 나타내는 다공성(porous) 구조를 제안한다. 기존에 개발된 원형 구멍을 이용한 구조는 연결선(ligament)의 회전 모멘트 부족으로 인해 인장 시 양의 포아송 비를 나타내는 한계점이 있었으며, 타원 형 구멍을 이용한 구조는 응력집중 현상으로 인하여 내구성(durability)이 약한 문제점이 있었다. 이에 본 연구에서는 휘어진 연결선의 배열을 통하여 인장하중 하에서의 회전 모멘트를 증가시키는 동시에 응력집중 현상을 완화하고 변형에너지(strain energy)를 구조물 전반에서 고르게 흡수하도록 설계하였다. 이를 통해 10%의 공칭 변형률(nominal strain) 범위 내의 압축 과 인장 모두에서 음의 포아송 비를 가지며, 기존 모델에 비하여 강성(stiffness)과 내구성이 개선된 구조를 개발하였다. 비선 형 유한요소해석을 통하여 기존 타원형 구멍 모델과의 비교를 수행하였으며 제안된 모델이 구조의 강성과 내구성 측면에서 현저히 개선됨을 확인하였다.
Compound logistics is a service aimed to enhance logistics efficiency by supporting that shippers and consigners jointly use logistics facilities. Many of these services have taken place both domestically and internationally, but the joint logistics services for e-commerce have not been spread yet, since the number of the parcels that the consigners transact business is usually small. As one of meaningful ways to improve utilization of compound logistics, we propose a brokerage service for shipper and consigners based on the hybrid recommendation system using very well-known classification and clustering methods. The existing recommendation system has drawn a relatively low satisfaction as it brought about one-to-one matches between consignors and logistics vendors in that such matching constrains choice range of the users to one-to-one matching each other. However, the implemented hybrid recommendation system based brokerage agent service system can provide multiple choice options to mutual users with descending ranks, which is a result of the recommendation considering transaction preferences of the users. In addition, we applied feature selection methods in order to avoid inducing a meaningless large size recommendation model and reduce a simple model. Finally, we implemented the hybrid recommendation system based brokerage agent service system that shippers and consigners can join, which is the system having capability previously described functions such as feature selection and recommendation. As a result, it turns out that the proposed hybrid recommendation based brokerage service system showed the enhanced efficiency with respect to logistics management, compared to the existing one by reporting two round simulation results.
본 논문에서는 아이소-지오메트릭 형상 최적설계 기법에서 얻은 CAD 정보를 직접 활용하여, 3D 프린터를 활용한 실험적 검증을 위한 시편을 제작하였다. 유한요소법에서는 요소망에 내재하는 기하학적인 근사가 응답과 설계민감도 해석에서 정밀도 문제를 발생시킨다. 더욱이 유한요소 기반 형상 최적화 과정에서는 CAD와의 정보교환이 필수적이나 그 과정에서 최적설계 정보의 손실이 발생할 수 있다. 아이소-지오메트릭 기법은 CAD에서 사용된 동일한 NURBS 기저함수와 조정점을 사용하므로 법선벡터와 곡률과 같은 엄밀한 기하학적 정보를 응답해석과 설계민감도 해석에 사용할 수 있다. 또한 최적설계 과정에서 CAD와 정보교환 없이 복잡한 형상을 손쉽게 변경할 수 있다. 그러므로 최적의 설계의 재료량을 실험적 검증을 위한 시편제작에 엄밀하게 반영할 수 있다. 굽힘 하중을 받는 단순지지 구조물에 대한 최적설계 및 실험적 검증을 통해 최적형상이 초기 형상에 비해 더 큰 강성을 가지며 실험결과와 수치 해석결과가 매우 잘 일치함을 보였다. 또한 인장력을 받는 유공판에 대한 형상 최적설계를 수행하였으며, 비접촉식 3차원 변형 측정 장치를 이용하여 초기설계에 비해 최적설계에서 구멍주변에서의 응력집중 현상이 완화됨을 확인하였다. 따라서 수치적인 방법을 활용한 최적설계가 실제 구조물에 대한 실험에서도 유효함을 입증하였다고 할 수 있다. 또한, 아이소-지오메트릭 최적설계 방법론이 기존의 유한요소법에 비해서 최적설계 결과를 제작하여 활용하는데 있어서도 훨씬 효율적이고 엄밀한 방법임을 보였다.
Domestic 105㎜ HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product (NO2, NO3, and HNO3) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants. 1)
Domestic 105㎜ HE (High Explosive) shell is divided into three parts (Fuze, Projectile and Propellants). Among three parts, propelling charge of propellants part consists of single base propellants. The lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product (NO2, NO3, and HNO3) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required so that it is ensure against risks. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that is inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.
Among ammunitions which are stored in a war field, the lifespan of propelling gunpowder is affected by storage environment such as storage temperature, humidity, and exposure to sunlight. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally disassembled to unstable substances similar with other nitric acid ester. We can’t prevent it fundamentally from being disassembled, but to restrain induction of automatic disassembly by decomposition product, a decom- position product (NO2, NO3, and HNO3) and tranquillizer DPA (Diphenylamine), having high reactivity, are added into a propellant. For this, it will decrease the velocity of tranquillizer which can also affect the velocity of producing the decomposition product of NC, storage temperature or humidity of propelling gunpowder is higher, drop of tranquillizer content is much faster. Therefore, to extend storage lifespan of propelling gunpowder, it is really important to control storage temperature or humidity inside the magazine. Hereupon, according to the manufacture of small scale model magazine and the result of performing experiments and measuring variation of inside temperature (storage temperature), using roof types that have a steel slate structure of magazine among ground magazines, this research shows the differences in details.
The revitalization of e-business via Internet brings big changes to the postal business, and leads to a tremendous increase of heavy and large sized postal mails with continuing growth of home delivery business. Thus, even though the number of intermediate storages for mail delivery that mailmen use for picking up mails in the middle of mail delivery has been being increased, it has still many problems such as insufficient number and size of the storages as well as avoidance of mail keeping of trust agents. It is necessary that safety of mail keeping, seamless mail delivery, and individual parcel pick-up process reestablish- ment should be made through an improved counter plan for the problems described previously. This study presents the efficient and right operational plan for the intermediate storage for mail delivery with providing the number and size of intermediate storages per mail delivery sequence according to four different types of post offices.
Among ammunitions which are stored in a war field, the lifespan of propelling gunpowder is affected by storage environment such as storage temperature, humidity, and exposure to sunlight. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally disassembled to unstable substances similar with other nitric acid ester. We can’t prevent it fundamentally from being disassembled, but to restrain induction of automatic disassembly by decomposition product, a decomposition product (NO2, NO3, and HNO3) and tranquillizer DPA (Diphenylamine), having high reactivity, are added into a propellant. For this, it will decrease the velocity of tranquillizer which can also affect the velocity of producing the decomposition product of NC, storage temperature or humidity of propelling gunpowder is higher, drop of tranquillizer content is much faster. Therefore, to extend storage lifespan of propelling gunpowder, it is really important to control storage temperature or humidity inside the magazine. Hereupon, according to the manufacture of small scale model magazine and the result of performing experiments and measuring variation of inside temperature(storage temperature), using roof types that have a steel slate structure of magazine among ground magazines, this research shows the differences in details.