In this study, we analyzed the radiant heat performance of ballast fin when the aspect ratio of the fin of ballast was changed. The minimum size of the mesh was 0.02 mm, and the grid number was about more than 11 thousand. In order to analyze the radiant heat performance of ballast fin, the aspect ratio of fin was 1.00(2 mm:2 mm), 1.80(1.5 mm:2.7 mm), and 0.56(2.7 mm:1.5 mm) respectively; that the heat transfer area was constantly 0.4 mm 2 . The numerical condition was that heat flux was constantly 1×10 5 W/m 2 , and measuring times were 0.1 second, 0.2 second, 0.5 second, 2 seconds, 5 seconds and 10 seconds respectively. The temperature values of fin at the 1.00 and 1.80 of aspect ratios were extremely large when heat flux time was 10 seconds. As a result, the maximum value of radiant heat performance of ballast fin appeared to the aspect ratio of 1.80.
This study was to develop the products that the Lamp and Ballast are combined for the purpose of easy installation to complement the difficulty of the installation process due to the structure of existing product which the lamp and the Ballast are separated, and that have 8-wavelengths dual-lamp structure such as solar, an advantage of more than 3 times longer life than fluorescent lamp and immediately lighting. This study developed the commercialized products that can prevent the environmental pollution caused by low efficiency and short life time of existing Lamps, and can replace the LED Lighting products which has high Glare index with high price, has also developed the variety of application for industrial, commercial, indoor and military. The applied product are Street lights, Security lights, Flood lights, Indoor lights and lights for fishing. This study solved the optimum distribution and placement of components considering the lightest weight first and thermal interference caused by combination of lamp and ballast by thermal release through applying the double bulkhead design of ballast box, and implemented the high efficiency Eco-friendly products with excellent visibility which can be applied and used for indoor and outdoor both place through high temperature and high humidity test, which has an advantage of 8-wavelengths of same spectrum of solar through the initial trial production.
Jigging and angling fishery is prevalent in the East Sea of Korea and this fishery needs many lamps to attract the fish. And the fishing boat uses 24~47 ballasts by the vessel's tonnage to turn on the fishing lamp. A 3.5kW magnetic-type ballast being currently used at many fishing boats can drive two 1.5kW metal-halide lamps. Meanwhile, this ballast has large weight (25kg) and volume. Therefore it is one of reason for the over-consumption of energy and the fire, resulted from overheat and electrical short, occurs occasionally because the ballast is installed at narrow and hot engine room. In addition, most of magnetic ballast has several problems such as periodic condenser replacement, low energy efficiency and making lamp short life, etc. So it is necessary to improve or develop newly the electronic ballast, which has to be smaller, lighter and more efficient. An electronic ballast was designed for the fishing boat by considering duration and electromagnetic interference in the study. Its weight and volume are respectably 40% and 66% compared to current ballast on the basis of PCB. The metal-halide lamp's spectrum of the designed ballast was nearly same to that of the current ballast in the test of lighting. In particular, the light stability was improved and there isn't any radio interference. As mentioned above, it is expected that the developed electronic ballast can replace current magnetic ballast because of many advantages related to energy-saving.
본 연구에서는 부분적으로 정상상태 확률과정으로 모델링할 수 있는 가진입력에 대하여 확률적으로 정의된 구조물의 최대응답에 대한 구속조건을 만족시키면서 제어력을 최소화 할 수 있는 최적설계 방법을 제안한다. 최적화 과정에서 안정성의 확보를 위해 제어기를 전상태 피드백 LQR제어기의 형태로 한정하였으며 가중치 행렬을 설계변수로 하고 Riccati 행렬을 매개변수로 하여 목적함수와 구속조건 함수 및 그 기울기를 계산한다. 제안된 방법을 통해 설계된 전상태 피드백 LQR제어기는 목표 응답성능을 만족시킬 수 있었고 이에 필요한 최대 제어력을 확률적으로 정량화하여 제어금기의 제작에 유용한 자료가 될 수 있도록 하였다. 상태변수 추정을 위해 독립적으로 설계된 Kalman 필터와 최적화된 LQR 제어기가 결합된 LQG 제어기 및 그 차수를 축소시킨 제어기는 모두 큰 성능의 저하가 없었으며 따라서 제안된 설계방법을 이용하여 구조물의 최대응답에 관한 구속조건을 만족시키는 출력 피드백 제어기 설계가 충분히 가능함을 확인하였다.
거친 바다를 운항하는 선박의 경우 횡 동요로 인해 선박 내의 장비운영 문제 및 탑승객들에게 큰 불편함을 초래한다. 따라서 횡동요 감쇠를 위한 목적으로 빌지 킬, 핀 안정기, 자이로스코프, ART(Anti-Rolling Tank), 타, 플랩 등 다양한 횡 동요 감쇠장치들이 사용되고 있다. 콴다효과는 콴다제트가 곡면의 표면을 따라 흐르며 주위 유동의 순환을 증가시켜 양력을 효과적으로 발생시키는 방법으로 핀의 양력성능을 향상시킬 수 있다. 본 연구에서는 모형시험 및 수치계산을 통해 콴다효과를 적용한 고정식 핀 안정기의 사용가능성을 검토하였다. 그 결과 받음각이 0˚에서, 제트모멘텀을 Cj = 0.25 만큼 공급할 때, 기준 핀의 최대 작동각(26˚)에서 발생되는 양력과 동일하게 발생되는 것으로 나타났다. 즉 받음각을 변화시키는 기존의 핀 안정기와 달리 받음각을 고정하고, 콴다효과를 통한 제트유동제어만으로 선박의 횡 동요를 능동적으로 제어 할 수 있을 것으로 보인다.