천연에서 발견되는 geversite (PtSb2), stumpflite (PtSb), insizwaite (PtBi2), unnamed PtBi 등의 광물에 대한 안정영역과 원소치환에 따른 고용체 존재를 규명하기 위해 백금-안티모니-비스머스 등 3성분계에 대한 합성실험적 연구를 실시하였다. 이번 연구에서 설정된 600℃ 온도의 실험결과에 의하면, 등축정계의 geversite와 insizwaite 사이에 완전고용체가 형성되며, Sb를 치환하는 Bi의 함량에 따라 단위포 상수는 6.4415(0 at.%), 6.4361(15 at.%), 6.5204(30 at.%), 6.5411(51 at.%), 6.6261(70 at%), 6.6540(85 at%), 6.728a(100 at.%)로 증가함을 알 수 있었다. 육방정계인 stumpflite와 unnamed PtBi 사이에도 완전고용체가 형성되며, Sb를 치환하는 Bi의 함량이 증가함에 따라 a 단위포 상수의 크기는 4.1388(0 at.%), 4.2118(20 at.%), 4.2118(40 at.%), 4.2485(80 at.%), 4.3242a(100 at.%)등 연속적으로 증가하지만, c 단위포 상수는 각각 5.4902, 5.4799, 5.508, 5.4817, 5.5045a등 불규칙하게 변함을 알 수 있었다. 0~33.33 at.% Pt 영역에서의 상평형 관계는 액체가 Pt(Sb,Bi)2 고용체와 공존하고 있고, Sb가 많이 함유된 액체에서는 geversite+원소광물 안티모니+백금이 거의 함유되지 않은 액체와 공생하는 3-phase assemblage를 형성한다. 자연계에서는 geversite와 insizwaite 및 stumpflite와 unnamed PtBi 사이의 화학조성을 가지는 광물이 발견되고 있는데, 이들은 각각 독립적인 광물종이 아니라 위 광물들의 고용체에 속하는 것임을 알 수 있었다. 이들 광물을 명명하고 해석하는데 매우 세심한 주의가 필요함을 알 수 있었다. 또한 단위포 상수를 측정을 통해 해당 고용체 광물의 Sb↔Bi 치환 양을 추정할 수 있다는 점과 광물 공생관계를 통해 생성온도를 추정할 수 있다는 사실을 알 수 있었다.
Crystallization behavior of platinum minerals within Pt-Sb-Bi bearing ore magmas and mineralogical properties of the existing minerals were investigated at 1,000℃ by synthetic experiment. High purity reagents were used as starting materials and silica tubings as containers. Reaction products were analysed by reflecting microscopy, X-ray diffraction, electron probe microanalysis, and micro-hardness test. Stable minerals at 1,000℃ are platinum, electron probe microanalysis, and micro-hardness test. Stable minerals at 1,000℃ are platinum, stump-flite (PtSb) and geversite (PtSb2). They are in equilibrium with liquid (ore magma). Platinum contains considerable amount of Sb of 7.5 at.%, whereas Bi only up to 0.9 at.%. Pure stumpflite is hexagonal with space group P63/mmc, and unit cell parameters are a=4.1318(6), c=5.483(1)a. VHN50=417(2)a. Geversite has cubic structure with space group Pa3. Cell parameters are a=6.4373(2)a and Vicker hardness values VHN50=663.5 (566~766). Both stumpflite and geversite show solid solution and their end-members are Pt48.8Sb40.7-Bi10.5, and Pt33.7-Sb59.8Bi6.5, respectively. Although stumpflite (m.p. 1,043℃) and unnamed PtBi (m.p. 765℃) do not form a complete solid solution at 1,000℃, they are known, at 600℃, to form a continuous solid solution. Geversit (m.p. 1,226℃) also forms complete solid solution with insizwaite (m.p. 660℃). Unit cell dimensions of the minerals above increases with the amount of Bi substituting for Sb.
Behavior of platinum group elements during crystallization within ore magma is of interest. In this study platinum is selected and its mineralogical and geochemical behavior in the presence of antimony and tellurium is investigated at 600℃. High purity Pt, Sb, and Te are used as starting material and silica quartz tubings are as container. Rection products have been examined by use of ore microscope, X-ray diffractometer, electron microprobe analyser and micro-indentation hardness tester. stable phases at 600℃ are platinum (Pt), Pt5Sb, Pt3Sb, PtSb, stumpflite (PtSb), geversite (PtSb), PtTe, Pt3Te4, Pt2Te3, moncheite (PtTe2), tellurantimony (Sb2Te3), and antimony (Sb). Geversite is the mineral showing the most significant extent of solid solution by up to 27 at% between Sb and Te elements. Isothermal section of 600℃ is established in this study. It is noted that platinum cannot coexists with stumpflite or geversite under equilibrium condition, and stumpflite composition in equilibrium with geversite may be used as geothermometer.