간행물

광물과 암석 KCI 등재 Korean Journal of Mineralogy and Petrology 韓國鑛物學會誌

권호리스트/논문검색
이 간행물 논문 검색

권호

제9권 제2호 (1996년 12월) 6

1.
1996.12 서비스 종료(열람 제한)
Epidote occurs as veinlets in the propylitic alteration zone of the Bobae clay deposit, Pusan, Korea. Its cell parameters apparently decrease with the contents of Al, Fe, and Ca. Fourier transform infrared (FTIR) spectra show one hydrosyl environment related to AlM2 at 3357-3358 cm-1. In the mid-infrared region, the peaks at 950 and 1030 cm-1 sharper with increasing Al shifting to higher energy region. The peak at 885 cm-1 shifts slightly to a lower energy region with a decreasing intensity as the Fe content increases. In the far-IR region, epidote exhibits absorption bands at 120 and 140 cm-1, which are related to the Ca-O bonds in A-sites.M ssbauer spectra of epidote show that the isomer shifts of Fe3+ range from 0.36-0.37 at the M3 site and from 0.35-0.44 at M1 site. Fe2+ shows the isomer shift ranging from 1.11 to 1.13. Quadrupole splitting is 2.04 for Fe3+M3, 0.52-0.70 for Fe3+M1, and 2.61-2.70 for Fe2+M3. Calculation shows Fe3+M386-90.7%, Fe3+M12.5-3.6%, and Fe2+M35.8-11.4% of total iron, showing preferential distribution of Fe3+ in the M3 site. The Fe3+M3 content is between 0.486 and 0.513 per formula unit. in the Fe-rich epidote, less Fe3+ and more Fe2+ are accommodated in the M1 and M3 sites. Hence, the overall disorder increases as total Fe content increase. The ordering parameter of the Bobae epidote is 0.93-0.95, suggesting a disequilibrium state below 200℃. The constant temperature over a long period may be essential for the transition from disordered state to equilibrium state, despite the possible variation in flux and composition of the hydrothermal fluid.
2.
1996.12 서비스 종료(열람 제한)
Early weathering products of anorthosite were investigated by using scanning electron microscopy in order to trace the development of halloysite particles and aggregates. Tiny short tubes or spheres precipitate on the plagioclase surface in the initial stage of weathering and form the compact globular aggregates. With continued growth, several globules are coalesced into wrinkled halloysite aggregates, and short tubes or spheres in globules grow into long tubes forming sheaf-like aggregates. Particle shape of halloysite varies with changing supersaturation degree of weathering solution, and determines the morphology of halloysite aggregates.
3.
1996.12 서비스 종료(열람 제한)
Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.
4.
1996.12 서비스 종료(열람 제한)
The coarse-grained (0.05∼0.2mm) zeolites occur as the single-crystal cement in the sandstones of the Chunbuk Formation in the Pohang area. The zeolite cements unusually consist of the composite phases of heulandite and clinoptilolite and in a crystal. The zeolite crystals show chemical zoning ranging from 3.56 to 4.10 in Si/(Al+Fe), and tend to become continuously more silicic and alkalic from the margin toward inside of the crystal. The DTA and high-temperature XRD analyses also show complex patterns of both zeolites. Such a composite crystal showing chemical zoning and complex thermo-chemical behaviors indicates that heulandite and clinoptilolite are constituting a solid solution resulted from the coupled substitution of K+Si4+=Ca2+Al3+.
5.
1996.12 서비스 종료(열람 제한)
Behavior of platinum group elements during crystallization within ore magma is of interest. In this study platinum is selected and its mineralogical and geochemical behavior in the presence of antimony and tellurium is investigated at 600℃. High purity Pt, Sb, and Te are used as starting material and silica quartz tubings are as container. Rection products have been examined by use of ore microscope, X-ray diffractometer, electron microprobe analyser and micro-indentation hardness tester. stable phases at 600℃ are platinum (Pt), Pt5Sb, Pt3Sb, PtSb, stumpflite (PtSb), geversite (PtSb), PtTe, Pt3Te4, Pt2Te3, moncheite (PtTe2), tellurantimony (Sb2Te3), and antimony (Sb). Geversite is the mineral showing the most significant extent of solid solution by up to 27 at% between Sb and Te elements. Isothermal section of 600℃ is established in this study. It is noted that platinum cannot coexists with stumpflite or geversite under equilibrium condition, and stumpflite composition in equilibrium with geversite may be used as geothermometer.
6.
1996.12 서비스 종료(열람 제한)
The precious serpentine, referring to a rare and highly valuable gem variety of serpentine group minerals, is found to occur in serpentinite from Booyo Gren Jade Mine which is located in Oesan-myun, Booyo-gun of Chungchungnam-do. Geommological properties of the precious serpentine have been investigated by use of polarizing microscope, specific gravity balance, refractometer, hardness pencils, X-ray diffractometer, XRF, ICP-MS analyser, and infrared absorption spectroscope.The precious serpentine from Booyo is colored deep green with oily luster and semi-transparent. It is highly tough and Mohs's scale of hardness is measured to be 5-6. Specific gravity is determined to be 2.67, and a single refractive index ND=1.56 is observed by a spot method, using sodium light source. X-ray powder diffraction data is represented by the reflection lines at 7.40(100), 4.64(25), 3.68(68), 2.757(69), 2.530(49), 2.549(32), and 1.710(21a), which compares very well with that of antigorite of serpentine group minerals. The major chemical compositions of the precious serpentine group minerals. The major chemical compositions of the precious serpentine are SiO2 42.49%, MgO 39.08%, Fe2O3 3.85%, and H2O 11.87%. Besides, trace elements such as Cr(2188), Ni(1110ppm), Co(58ppm), and Ta (108ppm) are relatively spectrum shows peaks at 3670, 1190, 1070, 980 and 610cm-1. Strong absorption at 3670cm-1 is due to OH stretching, and 1190, 1070 and 980cm-1 due to SiO stretching. The absorption 610cm-1 is formed by alteration of pre-existing ultramafic rock, namely peridotite, with an introduction of fluid with very little content of CO2, under 400℃ environment. Magnetite inclusions, finely disseminated in the precious serpentine, may be a result of Fe precipitation, during serpentinization of olivine-bearing country rock.