유비철석 + 황철석 + 육방정계 자류철석으로 구성되는“삼종동시접촉”을 수반하는 유비철석의 화학조성은 광화작용의 II단계에서 유용한 지온계를 제공한다. 연구에 따르면 이 지온계는 황분압 f(S2)=10-9.5 기압하에서, 지온 T = 330℃에서 형성된 것으로 밝혀졌다. 황철석 -육방정계 자류철석 완충곡선에서는 이 두 변수가 T= 315∼345℃와 f( S2)=10-10.5/∼10-9 기압에 해당됨을 보여 준다. 이지역에서 산출되는 안티모니를 포함하는 자류철석(Ic)는 무게 퍼센트가 4.95∼8.91에 달하는 상대적인 높은 간을 보이며, 철은 과다한 반면 양이온은 결핍되는 현상을 보인다. 자류철석에서 이러한 높은 안티모니 함량은 단일 입자내에서는 처음 알려진 것이다. 이러한 높은 안티모니 함량이 자류철석 Ic를 지온계로서 작용할 수 없게 만들었다. 광화작용 III단계에서의 4쌍의 자류철석과 섬아연석의 전자현미분석 결과는 T : 310∼340℃와 f(S2)=10 ∼10-9 / atm을 보이며, 이 값은 Fe-As-S 계에서 추정된 값과 일치한다...
보석으로 사용되고 있는 파이로프-알만딘 계열의 보석을 대상으로 하여 이들의 화학성분, 결정구조, 굴절율, 비중, 색, 광택 등의 광물학적 성질을 알아보았다. 또한 위 고용체의 광물학적 성질이 화학성분의 치환 정도에 따라 점이적인 변화 양상이 나타나는지에 대해서도 연구하였고, 발색소에 대한 연구를 실시하였다. 특별히 보석업계에서 관행적으로 분류 기준으로 삼아 온 굴절율과 비중 값이 광물학적으로 오류가 없는 것인지를 검증하는 것 등도 주요 연구목적에 포함되었다 적색석류석 시료 중 화학성분에 따른 분류기준에 의하면 17개가 파이로프이며, 6개가 알만딘임을 알 수있다. 파이로프의 굴절율은 1.77까지이며, 알만딘은 그 이상임을 알 수 있으며, 비중은 파이로프인 경우 3.88까지의 범위이며, 파이로프는 적어도 4.11이상임을 알 수 있었다. 따라서 보석업계에서 파이로프와 알만딘을 구분하여 온 굴절율 기준(R.I. 1.75)은 오류이며, 비중값 기준(S.G. 3.88)은 무난한 것으로 밝혀졌다. 단결정 X-선회절분석 결과에 따르면, 파이로프-알만딘 석류석이 모두 등축정계의 Ia3d 공간군에 속하며, 화학성분의 변화에 따른 단위포의 크기는 변화를 느낄 정도의 차이는 없었다. 또한 굴절율과 비중은 파이로프-알만딘 고용체에 있어 특히 FeO 함량에 따라 일정한 변화양상을 나타내는데, FeO의 함량이 증가할수록 굴절율과 비중이 증가함을 알 수 있다. 화학분석 자료에 의하면, 적색 및 보라색은 Fe+2, 황색은 Mn+2 함량에 따라 크게 좌우됨을 알 수 있다. 적색 석류석내에 들어있는 결정 내포물은 주로 저어콘과 금홍석이었다.
국내산 벤토나이트의 유변학적 특성과 그 규제 요인을 파악하기 위해서 각종 응용광물학적분석과 체표면적, 입도분포, 팽윤도 및 점성도를 측정하였다. 비교적 저품위(몬모릴로나이트 함량:30∼75 wt%)를 이루는 국내산 Ca-형 벤토나이트들은 2∼4 μm의 입도를 갖고 대부분 반자형의 엽상 결정체를 이룬다. 현탁액 상에서 벤토나이트 광물성분들의 입도 분포는 대체로 10∼100 μm 범위에서 높은 빈도를 보이고 전체적으로는 다소 복잡한 이중적인 분포양상을 나타낸다. 이 같은 양상은 제올라이트질 벤토나이트에서 보다 심하게 나타난다. 이 벤토나이트들의 EGME 체표면적은 269∼735 m2/g의 값의 범위를 갖는 것으로 측정되었다 이 체표면적 값은 몬모릴로나이트의 함량, 수분함량 및 CEC 수치와 대체로 정비례하는 관계를 나타낸다. 제올라이트질 벤토나이트가 제올라이트를 함유하지 않는 것보다 전반적으로 약간 높은 체표면적 갈을 갖는다. 국내산 벤토나이트들은 전반적으로 낮은 팽윤도와 점성도를 나타낸다. 2∼5 wt%의 Na2CO3첨가에 의해서 유발된 국내산 벤토나이트들의 팽윤도 향상 최대치는 몬모릴로나이트의 함량과 불순물, 특히 제올라이트의 함유정도에 따라 250∼500%수준인 것으로 측정되었다. Na치환능력이 강한 제올라이트를 함유하는 벤토나이트의 팽윤도 향상에는 좀더 많은 양의 Na2CO3가 소요된다 점성도에 있어서는 장석의 함량이 높고 상대적으로 낮은 입도와 결정도를 갖는 벤토나이트들이 비교적 높은 수치를 보이는 경향이 있다. 또한 현탁액의 pH가 상대적으로 높은 수치를 보이는 시료들이 대체로 점성도가 높은 것으로 나타난다. 그렇지만 벤토나이트의 주요한 유변학적 특성들인 팽윤도와 점성도는 몬모릴로나이트의 함량이나 평균 분산입도와는 뚜렷한 일률적인 상관관계를 보이지 않는 것으로 나타난다. 이에 비해서 팽윤도는 벤토나이트의 광물조성, 표면전하 특성, 입도 및 형상 등의 물리화학적 성향을 포괄하는 체표면적 수치와 대략적으로 반비례적인 관계를 보인다 따라서 벤토나이트 현탁액에서의 유변학적 특성은 몬모릴로나이트의 표면전하 특성, 형태, 입도 및 조직 등의 차이에 의해서 달라지는 점토 입자들의 응집특성 및 취합결정체의 형상에 주로 규제되고, 제올라이트와 같은 미세한 불순 광물성분들의 영향도 부수적으로 관여되는 복합적인 성향인 것으로 해석된다.
흔히 발견되지 않는 광물상들이 후기 열수변질광물로서 거도광산에서 관찰된다. 열수광물들은 스카른 광물들을 열수변질시키거나 공간충진 정출작용으로 산출된다. 즉, 투휘석, 석류석 및 장석들을 교대하여 녹니석과 포도석, 일라이트 및 펌펠리아이트 등을 산출하거나 열극이나 정동에서 정출한 것으로 포도석, 펌펠리아이트, 클리노조이사이트, 일라이트 및 Ca-불석(스틸바이트와 스텔러라이트) 등이 있다. 이들 열수광물들에 대해 X-선 회절분석, 주사전자현미경 관찰 및 전자현미분석을 통해 광물상과 산출상태 등이 상세히 규명되었다. 후기 공간충진 열수광물들을 대상으로 슈라이네마크 작도법에 의한 상평형 관계를 규명하였으며, 등온-등압 μH2O-μCO2상평형도를 작도하였다. 그 결과 초기에 정출된 포도석, 펌펠리아이트, 클리노조이사이트, 일라이트 및 녹니석은 비교적높은 CO2분압과 낮은 H2O 분압 하에서 먼저 정출되었으며, 그 후 H2O 분압이 증가하면서 일라이트와 수반되어 스틸바이트와 방해석이 정출되었다.
일부 기존 콘크리트 내에서 발견되는 에트린자이트(ettringite)와 사우마사이트(thaumasite)에 대하여 산출상태 및 화학성분을 조사하고, Na2SO4 용액을 이용한 인공적인 변질 실험을 수행하여, 이들 광물의 특정 환경 조건하에서의 안정도와 콘크리트의 성능저하에 미치는 영향을 연구하였다. 에트린자이트와 사우마사이트의 형태 관찰과 성분분석을 위하여 전자현미경(SEM)을 통한 EDAX분석을 실시하였다. 에트린자이트는 시멘트 페이스트의 공간을 충진하거나, 시멘트 페이스트를 치환한 형태로 나타나며, 미세 균열이 에트린자이트로부터 시멘트 페이스트 내부로 전파되고 있음이 잘 관찰되었다. 에트린자이트는 특정 환경 조건하에서 사우마사이트와 트리클로로알루민산염(trichloroaluminate)으로 쉽게 전이되거나 분해되었다. 사우마사이트는 탈백운석화작용을 수반하는 탄산염 골재를 사용한 콘크리트와 탄산화가 진행된 해안지역의 콘크리트에서 에트린자이트와 수반되어 나타난다. 사우마사이트의 형성 조건은 에트린자이트와 유사한 조건에서 형성되는 것으로 생각되나, 에트린자이트가 먼저 형성된 후 치환작용에 의하여 에트린자이트/사우마사이트 고용체를 형성하는 것으로 생각된다. 콘크리트내의 에트린자이트는 염화물이 공급될 경우 염소가 에트린자이트의 황산염을 부분 또는 완전한 치환하여 에트린자이트와 유사한 결정구조를 가지는 트리클로로알루민산염으로 전이되며, 또한, 트리클로로알루민산염은 황산염이 다시 공급될 경우, 치환반응에 의하여 다시 에트린자이트로 전이되었다. 두 광물의 치환반응의 반응 경로는 용액내의 염소이온과 황산이온의 농도에 따르는 것으로 생각된다. 이상과 같이, 에트린자이트는 콘크리트 내에서 다양한 내외부적인 화학작용 따라 특징적인 산출 양상을 보이며, 주변 환경 조건에 따라 다른 광물로 전이되는 나타내었다. 이러한 연구결과, 에트린자이트의 생성에 따른 콘크리트의 성능저하는 그 광물학적 특성과 분포양상에 관련성을 가지는 것으로 나타났다.
Na-장석(Amelia albite)의 등온가열 실험에 대한 XRD 분석 결과는 1073℃의 가열 시료에서 격자상수의 급격한 변화를 보여주는데, 이는 Al과 Si의 비배열(disordering)과 가열된 시료의 급랭에 의한 격자 변형 때문이라고 본다. 1073℃에서는 약 7일 간의 가열에 의해 저온 알바이트에서 고온 알바이트로 상전이한 반면, 924℃에서는 Al-Si의 비배열 속도가 느려서 140일 동안 가열된 시료도 초기 단계의 중간단계 알바이트 상태로 남아 있었다. TEM 분석 결과는 가열된 시료에서 100∼200a 크기의 트위드(tweed) 구조가 형성됨이 특징적인데, 이 구조의 발달 및 변화는 고온(1073℃)과 저온 (923℃)의 가열 시료가 다름이 드러났다. 즉, 전자는 국부적으로 알바이트 쌍정과 유사한 미세구조로 전이한데 반해, 후자는 보다 넓은 지역에 걸쳐 알바이트 쌍정면이 우세한 도메인 구조로 전이하였다. 가열에 의한 Al과 Si의 비배열과 급랭에 의한 응력 때문에 격자의 불안정(lattice instability)이 증가하게 되는데 이를 완화시키기 위하여 태아 단계의 쌍정 구조(알바이트 쌍정과 pericline 쌍정)를 형성되는 것이 트위드 구조의 원인이라고 본다.