간행물

광물과 암석 KCI 등재 Korean Journal of Mineralogy and Petrology 韓國鑛物學會誌

권호리스트/논문검색
이 간행물 논문 검색

권호

제32권 제3호 (2019년 9월) 7

1.
2019.09 서비스 종료(열람 제한)
토도로카이트(todorokite)는 3 × 3 망간 팔면체로 이루어진 상대적으로 큰 나노공극(nanopore)을 가지는 터널구조의 산화망간광물로 나노공극에 다양한 양이온 함유가 가능하기 때문에 금속이온 거동에 큰 역할을 할 수 있다. 주로 결정도가 낮고 다른 산화망간광물들과 함께 집합체로 발견되어 나노공극 내부 양이온의 배위(coordination)구조는 실험만으로 여전히 규명하기 매우 어렵다. 이번 논문에서는 고전분자동력학(classical molecular dynamics, MD) 시뮬레이션을 이용하여 토도로카이트 터널에 함유된 Mg2+ 이온의 배위구조에 대한 연구결과를 처음으로 소개한다. 기존 실험에서는 토도로카이트 내부에 함유된 Mg2+가 공극의 중앙에 우세하게 자리한다고 알려져 있다. MD 시뮬레이션 결과, Mg2+ 이온의 약 60 %가 나노공극의 중앙에 위치하지만, 약 40 %의 Mg2+는 광물의 표면에 해당하는 공극의 코너에 위치하였다. 공극 중앙의 Mg2+는 수용액에서처럼 물 분자와 6배위수를 보였다. 공극 코너의 Mg2+ 역시 6배위수를 보였는데, 물 분자 이외에도 망간 팔면체 표면 산소와 배위를 보였다. Mg2+ 이온의 동적 거동을 파악하기 위해 계산한 평균 제곱 변위(mean squared displacement) 결과에서는, 수용액 벌크(bulk) 상태에서 갖는 물 분자와 양이온의 동적 성질이 토도로카이트 1D 나노공극에서는 유지되지 못하고 잃어버리는 것을 확인할 수 있었다.
2.
2019.09 서비스 종료(열람 제한)
2015년 극지연구소의 로스해 지질탐사 동안 로스해와 남빙양이 접하는 대륙대 지역에 위치한 정점에서 롱코어(RS15-LC48)를 시추하였다. 이 코어에서 지난 홀로세와 플라이스토세 동안 퇴적된 해양 퇴적물을 구성하는 점토광물의 특성과 기원지를 규명하고자 퇴적물의 퇴적상, 입도분포, 점토광물의 종류와 함량비, 일라이트의 결정도 지수와 화학지수를 분석하였다. 퇴적학적 특성에 따라 크게 네 개의 퇴적단위들로 구분되며 이들은 플라이스토세부터 홀로세 시기에 걸친 여러 번의 빙하기/간빙기 퇴적작용에 의해 형성된 것으로 해석된다. 퇴적물은 주로 사질 점토와 실트질 점토, 빙하 쇄설물들로 구성되어 있다. 깊이에 따른 퇴적물의 입도 분포와 모래 입자의 함량 변화는 대자율의 변화와 매우 유사하게 나타났다. 또한 점토광물의 상대적 함량비는 전체적으로 일라이트(52.7 %)가 가장 우세하고 스멕타이트(27.7 %), 녹니석(11.0 %), 카올리나이트(8.6 %) 순서로 나타났으며, 석영, 사장석 등의 화산 활동 기원 초생광물도 함께 수반되어 나타났다. 일라이트와 녹니석 함량의 증가와 해당 깊이에서의 일라이트 결정도지수와 화학지수는 퇴적물이 주로 로스해 빙상 하부에 위치한 남극 종단산맥의 기반암으로부터 기인했음을 지시한다. 반면 스멕타이트의 함량은 다른 점토광물의 변화 양상과 반대로 나타나는데, 이는 간빙기 동안 로스해 서안의 빅토리아 랜드 연안에서 북동쪽으로 흐르는 해류에 의해 스멕타이트가 추가적으로 운반되어 퇴적된 것으로 사료된다.
3.
2019.09 서비스 종료(열람 제한)
남극 벨링스하우젠 해(Bellingshausen Sea)의 동쪽 대륙붕과 대륙대에 위치한 중력코어(BS17-GC15, BS17-GC04)를 2017년 ANA07D 탐사 동안 획득하였다. 두 코어를 이용하여 벨링스하우젠 해의 해양 퇴적물 내 빙기-간빙기에 따른 점토광물의 분포와 성인을 조사하였다. 두 코어에 대해 퇴적상의 특성을 기술하고, 입도 분석, X선 회절 분석을 실시하여 점토광물의 조성 변화를 관찰하였다. 퇴적학적 특성에 따라 BS17-GC15 코어는 세 개의 퇴적상들로 구분되며 이들은 마지막 빙하기, 전이퇴적상, 간빙기 시기의 퇴적작용에 의해 형성된 것으로 보인다. BS17-GC04 코어는 하부에 빙하기저부 기원의 저탁류의 조합으로 퇴적되는 저탁류 퇴적층과 니질층이 관찰되고, 위쪽으로 올라갈수록 실트질 엽층이 나타나며 상부에서는 생물교란 흔적이 포함된 반원양성 니질층이 나타난다. 퇴적상이 변함에 따라 점토광물의 함량비도 다르게 나타난다. BS17-GC15 코어는 시기에 따라 일라이트가 평균 28.4~44.5 %로 가장 큰 변화를 보이고, 스멕타이트는 빙하기 때 평균 31.1 %에서 20 %로 감소하였다가 간빙기 때 25.1 %로 다시 증가하는 양상을 보였다. 녹니석과 카올리나이트의 합은 빙하기 때 평균 40.5 %에서 간빙기 때 30.4 %로 감소하였다. 빙하기 동안 퇴적물이 남극 반도로부터 유입되기 때문에 높은 일라이트와 녹니석 함량을 보인다. 반면, 대륙대에 위치한 BS17-GC04 코어는 빙하기 때 스멕타이트의 함량이 평균 47.2 %에서 상부로 갈수록 평균 20.6 %까지 감소하고 일라이트는 하부에서 평균 21.3 %에서 43.2 %로 증가한다. 빙하기 동안의 높은 스멕타이트 함량은 근처의 스멕타이트가 풍부한 퇴적물인 피터 1세 섬에서 퇴적물이 남극순환류에 의해 운반되었을 것으로 예상되고, 그 이후 간빙기에는 상대적으로 서쪽으로 흐르는 등수심 해류의 영향으로 동쪽의 벨링스하우젠 해의 대륙붕 퇴적물로부터 일라이트와 클로라이트가 풍부한 퇴적물이 운반되었을 것이라 예상된다.
4.
2019.09 서비스 종료(열람 제한)
본 연구목적은 비-가시성 금 정광(Au = 1,840.00 g/t)으로부터 금을 단체분리 시키기 위하여 마이크로웨이브-질산침출 실험을 수행하였다. 이를 위해 질산농도 효과, 마이크로웨이브 침출시간 효과 그리고 시료 첨가량 효과에 대하여 마이크로웨이브-질산침출 실험을 수행하였다. 본 연구의 실험조건에서는 금이 전혀 침출되지 않은 것으로 조사되었다. 불용성-잔류물의 무게는 질산 농도, 마이크로웨이브 침출시간 그리고 시료 첨가량이 증가할수록 감소하는 경향으로 나타났다. 불용성-잔류물에 대하여 XRD 분석한 결과 석고와 anglesite가 나타나는데 이는 정광에 포함된 방해석과 방연석이 질산용액과 반응하여 생성된 것으로 사료된다. 불용성-잔류물에 대하여 납-시금법을 수행한 결과 정광보다 금 함량이 최소 1.3배(Au = 2,464.70 g/t)에서 최대 28.8배(52,952.80 g/t)로 높게 나타났다. 그러나 납-시금법에서 회수된 금 함량은 gold nugget effect가 매우 심하게 나타났다. 향후, 마이크로웨이브-질산침출 실험에서 정광의 시료채취 방법을 개선하고, 더 작은 기공 크기의 여과지를 사용하여 침출용액을 여과하고 납-시금법에서 여과지를 태워서 시료로 투입하는 방법을 수행한다면 gold nugget effect를 감소시킬 수 있을 것으로 기대된다.
5.
2019.09 서비스 종료(열람 제한)
단층 비지는 단층의 미끌림에 의해 입도와 결정도가 낮아지는 특성을 가지는 것으로 알려져 있다. 활석을 비롯한 층상규산염 광물은 단층 비지에 존재하며 단층 약화에서 중요한 역할을 할 수 있는데, 특히 광물 표면에 흡착된 물분자의 존재 여부에 따라 마찰계수가 달라진다. 본 연구에서는 고에너지 볼 밀을 이용해 입도와 결정도를 체계적으로 변화시킨, 분쇄 전후 활석의 함수율과 탈수반응 거동의 변화를 통해 활석이 단층 약화에 미치는 영향에 대해 알아보고자 하였다. 적외선 분광분석 및 열분석 결과, 분쇄 전 활석은 소수성을 띠며 물분자가 거의 존재하지 않는다. 이후 최대 720분까지 진행된 분쇄를 통해 입도가 약 100~300 nm 내외까지 감소하고 비정질화가 진행된 활석에서는 물분자에 의한 함수량이 분쇄 전에 비하여 약 8 wt.% 증가하였다. 또한 분쇄된 시료를 가열할 경우, 분쇄 전에 비하여 기화되는 수증기의 양이 증가한다. 입도 및 결정도 감소에 따라 탈수산기 반응 온도도 분쇄 전 약900 °C에서 720분 분쇄 후 약 800 °C로 감소하였다. 이와 같이 분쇄된 활석의 입도 및 결정도 감소에 의해 소수성이 친수성으로 바뀌며 층상 규산염 광물의 마찰계수를 낮출 것으로 생각된다. 지진 사이클을 통해 반복되는 단층의 미끌림은 지속적으로 단층 비지에 존재하는 활석의 마찰 계수를 낮출 것으로 생각되며, 오래된 단층이 점점 약화되는 원인에 대한 실마리를 제공할 수 있을 것으로 기대된다.
6.
2019.09 서비스 종료(열람 제한)
버네사이트(birnessite, 7 Å manganate, δ-MnO2)는 망간단괴를 구성하는 주요한 광물이다. 버네사이트는 또한 이온교환제와 배터리 재충전 물질로서 사용될 수 있기 때문에 다양한 합성법이 연구되고 있다. 그러나 버네사이트는 화학양론적으로 성립하지 않는 화학조성을 가지기 때문에 합성시 단일 상을 수득하기에는 어려움이 존재한다. 버네사이트 합성과정 중에서 중간생성물로 페이크네타이트(β-MnOOH)가 나타나는데, 본 연구에서는 이 중간생성물이 버네사이트로 상전이 하는 특성 차이를 XRD와 SEM 결과를 통해 비교하였다. 이번 연구에서는 기존에 연구된 합성 방법 중에서 산화-환원(redox)반응을 기작으로 하는 Feng et al. (2004)와 Luo et al. (1998) 두 방법을 이용하였다. Feng et al. (2004) 방법으로는 27 °C에서 60일, Luo et al. (1998) 방법으로는 60 °C에서 3일 에이징 한 시료에서 단일 상의 버네사이트를 수득할 수 있는 것으로 나타났다. 이러한 두 시료의 상전이 특성은 Mg2+ 도핑여부에 따라 차이가 나타나는 것으로 판단되며 Mg2+ 도핑된 Luo et al. (1998) 방법으로 합성된 버네사이트의 경우 페이크네타이트 상전이 속도가 느리게 나타났고 고온에서 거의 단일 상 버네사이트를 확인할 수 있었으며 결정 표면 및 형태 또한 두 방법 간의 차이를 확인하였다.

단 보

7.
2019.09 서비스 종료(열람 제한)
삼덕 Mo 광상 주변지질은 고생대 화전리층, 고운리층, 서창리층, 이원리층, 황강리층, 백악기 우백질 반상화강암 및 화강반암으로 구성된다. 이 광상은 서창리층 내에 발달된 NS 방향의 열극대를 따라 충진한 3개조의 석영맥으로 구성된 광상으로 석영맥의 맥폭은 0.05~0.3 m 정도로 팽축이 심하고 석영맥의 연장성은 약 400 m 정도이다. 석영맥은 괴상, 각력상 및 정동조직들이 관찰되며 모암변질로는 규화작용, 견운모화작용, 점토화작용 및 녹니석화작용 등이 관찰된다. 산출광물은 석영, 형석, 백색운모, 흑운모, 인회석, 모나자이트, 금홍석, 티탄철석, 휘수연석, 황동석, Fe-Mg-Mn 산화물 및 철 산화물 등이다. 이 광상의 백색운모는 석영맥과 모암에서 세립질에서 조립질로 산출되며 4가지 산출유형(I 유형:석영, 휘수연석, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, II 유형: 석영, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, III 유형: 석영 및 흑운모와 함께 산출되는 것 및 IV 유형: 석영과 함께 산출되는 것)을 갖는다. 석영맥에서 산출되는 백색운모의 화학조성은(K0.89-0.60Na0.05-0.00Ca0.01-0.00 Sr0.02-0.00)0.94-0.62(Al1.54-1.12Mg0.36-0.18Fe0.26-0.09Mn0.04-0.00Ti0.02-0.00Cr0.02-0.00Zn0.01-0.00)1.91-1.72(Si3.40-3.11Al0.92-0.60)4.00 O10(OH1.68-1.42 F0.58-0.32)2.00이나 I 유형의 백색운모는 나머지 유형의 백색운모보다 SiO2 및 MgO 함량은 낮고 FeO 함량은 높게 나타난다. 또한 이 광상의 백색운모의 화학조성 변화는 팬자이틱 또는 Tschermark 치환((Al3+)VI + (Al3+)IV ↔ (Fe2+ 또는 Mg2+)VI + (Si4+)IV) 및 직접적인 (Fe3+)VI ↔ (Al3+)VI 치환에 의해 일어났음을 알 수 있다.