버네사이트(birnessite)는 약 7Å의 d-spacing을 가지는 대표적인 층상형 산화망간광물로 높은 양이온 교환능력을 가지기 때문에 지하수나 퇴적물 공극 유체의 화학조성을 결정짓는 중요한 역할을 한다. 버네사이트의 양이온 교환 반응 기작을 규명하기 위해서는 층간 내 양이온의 배위 환경과 결정구조에 대한 원자 수준의 이해가 매우 중요하다. 이번 연구에서는 원자 수준의 계산광물학 방법인 고전 분자동역학(classical molecular dynamics; MD) 시뮬레이션을 이용하여 기존 실험에서 보고된 화학조성을 가지는 삼사정계 N a-와 K-버네사이트의 결정구조, 층간 양이온의 배위 환경 및 적층 구조를 계산하였다. 계산 결과는 기존 X-선 실험에서 보고된 격자 상수와 층간 배위 환경을 잘 재현하여 시뮬레이션 방법의 신뢰성을 보여주었으며, X-선 실험만으로는 구분하기 어려운 층간의 양이온과 물 분자 위치를 구별한 원자 수준의 정보를 제공하였다. 망간 팔면체 층의 적층 순서는 동일하지만 층간 내 N a+와 K+의 위치가 서로 상이하고, 층간 양이온의 배위 환 경과 결정구조 간의 상관관계를 보인다. 원자 수준의 분자동역학 시뮬레이션은 버네사이트의 양이온 교환 반응 기작 규명에 크게 기여할 것으로 기대한다.
우리나라 제4기 고환경 변화 특성 규명을 위하여 수원시의 편마암 및 화강암 풍화대를 피복하는 적갈색 점토-실트 퇴적물 2개 단면(~3.5 m)에 대하여 광물 및 지화학 분석을 실시하였다. 퇴적층은 광물조성과 화학조성의 수직 변화를 기준으로 4개의 퇴적층(Unit 1-4)으로 구분되었다. 최하부 Unit 1은 K-장석 함량이 높은 사질 퇴적물로서 기반암 풍화물의 기여도가 높다. Unit 2는 전이층이며, Unit 3은 적갈색 점토-실트질 퇴적물로서 총점토 함량이 평균 58%이며, 주요 점토광물은 일라이트-스멕타이트 혼합층 광물과 수산기삽입 질석/스멕타이트이다. Unit 3에는 사장석이 거의 함유되어 있지 않은 반면에, 그 풍화물인 고령토 광물의 함량이 다른 층들보다 높다. Unit 4는 전반적 광물조성과 화학적 특성이 Unit 3과 유사하나, 사장석과 녹니석의 함량이 더 높고 고령토 광물의 함량은 더 낮다. 단면내 화학성분 변화를 국내 타지역 적갈색 점토-실트층 과 비교한 결과, Unit 3과 4는 풍성퇴적물의 범위에 포함되었다. 이 지역 퇴적 단면에서 고환경변화는 다음과 같이 해석된다. 기반암인 편마암과 화강암 풍화물이 침식되어 주변부에 사질 퇴적물로 퇴적되어 하부층 (Unit 1, 2)을 이루고, 그 위에 빙하기의 점토-실트질 풍성퇴적물층(Unit 3)이 퇴적되었다. Unit 3은 간빙기의 풍화작용으로 풍화되어 전체적으로 적갈색 토양화되었다. 그 후 다시 빙하기로 접어들면서 최상부에 풍성퇴 적물층(Unit 4)이 퇴적되었다.
생물체의 활동 특히 미생물의 활동은 직·간접적으로 전 지구적으로 분포하는 퇴적물 및 암석 내부 광물의 형성 및 변형에 영향을 주고, 일부는 특징적인 생물기원구조를 형성한다. 특히, 특징적인 생물기원구조에 분포하는 광물은 기존에 알려진 무기적 과정을 통하여 형성되기 어려운 환경에서 형성되기도 하고, 무기적 과정을 통하여 형성된 광물과는 다른 물성 및 특성을 나타낸다. 이러한 생물체의 영향을 받아 형성된 생물기원구조에 대해 연구·분석하는 것은 새로운 광물 형성 메커니즘을 규명하는데 필수적이라 할 수 있다. 따라서 본 논문은 심해저 망간각 및 해저열수분출공 지역 미생물 매트 시료를 예로 들어, 주사전자현미경 분석을 통한 자연환경에 분포하는 생물기원구조 관찰에 대해 소개하고 분석방법, 장점 및 활용에 대해 설명하고자 한다.
한반도 3개 해역 중 동해 퇴적물의 점토광물에 관한 연구는 고환경 변화 측면에서의 일부 연구 외에는 거의 이루어진 바가 없다. 이번 연구에서는 2017년부터 2019년까지 강릉-동해 해역에서 상자형 시료채 취기를 이용하여 채취한 120개 퇴적물 시료에 대한 점토광물 특성과 분포 상태를 바탕으로 기원지를 추정하였다. 점토광물 함량은 일라이트, 녹니석, 카올리나이트, 스멕타이트 순으로 풍부하다. 수심 150 m 이하의 대륙붕 퇴적물은 대륙사면 퇴적물에 비하여 녹니석과 카올리나이트 함량은 많고 일라이트 결정도는 좋은데 반하여 일라이트와 스멕타이트 함량과 S/I 지수는 작다. 대륙붕 퇴적물의 경우 강릉 쪽은 녹니석 함량이 많고, 동해 쪽은 카올리나이트 함량이 많은데 이것은 육상 지질을 반영한 것으로 여겨진다. 이와 같은 점토광물의 여러 특징은 대륙붕 퇴적물과 대륙사면 퇴적물의 기원지가 다른 것을 시사한다. 대륙붕 퇴적물은 주변 하천을 통하여 유입되었고, 대륙사면 퇴적물은 해류에 의하여 남쪽으로부터 이동된 것으로 판단된다.
자원의 재활용 관점에서 굴패각의 소성에 관한 연구가 많이 진행되고 있다. 굴패각을 소성시켜 만들어진 생석회는 건식으로 사용되기도 하고 물과 반응을 시켜 액상소석회로 변환시킨 뒤 사용되기도 한다. 그러나 굴패각은 석회석과는 약간 다른 소성 및 액상소석회 변화의 특성을 보여준다. 본 연구에서는 굴패각과 이를 비교하기 위한 석회석을 소성시켜 생석회를 만든 후 이를 다양한 온도의 물과 반응시켜 액상소석회로 변환 실험을 실시하였다. 액상소석회로 변환 후 150 μm의 체를 이용하여 거르고 액상소석회로의 전환률을 계 산하였다. 소성된 석회석은 모든 온도에서 액상소석회로 전환되었다. 그러나 굴패각의 경우 본 연구의 실험 조건 중 30oC와 50oC에서 액상소석회로 변환되지 않고 오히려 물과의 반응을 통하여 만들어진 Ca(OH)2의 존 재로 질량이 증가하였으며 90oC에서도 석회석 보다는 낮은 액상소석회 전환률을 보여주었다. 굴패각에서 보여주는 이러한 차이는 굴패각의 각주층과 진주층에서 발견되는 단백질의 일종인 콘키올린이 높은 온도에서도 분해되지 않아 물과의 반응을 감소시켜 생기는 결과로 일부 설명할 수 있다. 그러나 콘키올린이 존재하지 않 는 초크층에서도 석회석 보다 액상소석회의 변화률이 낮음을 보여준다. 이것은 석회석에는 거의 존재하지 않 으나 굴패각에서 미량으로 존재하는 Na에 의하여 소성 시 패각의 방해석이 공융용융체 형성과 같은 추가적인 반응에 의한 것으로 생각된다.
태백산광화대에 속하는 영월군 녹전리 일대에는 이목화강암과의 경계부를 따라 탄산염암을 모암으로 하는 Ca 및 Mg 스카른과 광화작용이 발달하였다. Ca 스카른은 석회암을 모암으로 석류석과 휘석이 산출되며, Mg 스카른은 백운암이 모암이며, 감람석 및 사문석이 발달한다. 광석광물은 초기 자철석-적철석 그리고 후기 자류철석(±회중석)-황철석-방연석-섬아연석이 정출된다. 석류석은 근거리에 안드라다이트 조성 그리고 원 거리에 그로슐라 조성이 각각 우세하며, 휘석은 투휘석이 주로 산출된다. 이러한 조성변화는 유체가 이목화강 암에서 원거리로 이동함에 따라 모암과의 반응이 증가하여 산화환경에서 환원환경으로 변화하였음을 나타낸다. Mg 스카른의 자철석이 Ca 스카른보다 Fe2O3는 높고 FeO는 낮은 특징을 보이며, Mg 스카른에서 높은 MgO 함량을 보인다. 섬아연석의 Zn/Fe 비는 이목화강암에서 멀어질수록 증가하는 경향을 보인다. 황화광물 의 δ34S 값은 이목화강암과 유사한 값을 보이고 있어서 대부분의 황이 화성기원임을 시사한다. 광화작용은 온도 및 산소분압의 감소와 더불어 황분압이 증가함에 따라 스카른광물, 산화광물 그리고 황화광물 순으로 정출되었다.
나노물질에 대한 연구와 산업화가 급격히 진행되면서 수환경으로 유출되는 나노물질의 양도 점차 많아지고 있다. 특히 은나노물질의 경우 은의 항균성으로 인하여 다양한 분야에서 사용되고 있으며 환경으로 유출되어 입자상태와 용해된 상태로 존재할 수 있다. 은나노물질과 은이온은 생태환경에 악영향을 줄 수 있으며 미국에서는 2차 먹는물 규제 항목(secondary drinking water standards)으로 정하고 있으며 규제농도는 0.1 mg/L로 정하여 관리하고 있다. 본 연구에서는 경북지역의 지하수와 소규모 먹는 물 공급시설을 대상으로 은의 농도를 측정하였으며 오염 정도를 미국 EPA 기준과 비교하고 시료를 채취한 지역의 특성, 물의 사용 목적 등을 고려하여 분석하였다. 총 293개의 시료 중 EPA의 secondary drinking water standards를 초과한 시료는 2개이며 비율로 0 .6 7%이다. 검출률은 마을 상수도와 소규모 급수시설에서 상대적으로 높으며 농도 기준으로는 지하수에서 상대적으로 높은 농도를 보여 인위적 오염원과 지질적 기원이 동시에 작용한 것으로 판단되었다.
본 연구의 목적은 선상에서 열수광물 내 Au를 효과적으로 용출하기 위한 마이크로웨이브-차아염소 산 용출의 적용 가능성을 파악하는 것이다. 비교용출실험은 마이크로웨이브 질산용출의 유(T1)/무(T2)에 따른 Au 용출율의 영향을 확인하였다. 또한, 기계적 교반에 의한 전통적인 용출(T3)과 마이크로웨이브 용출에 따른 Au 용출율을 비교하였다. 마이크로웨이브 질산용출결과(고액비; 10%, 용출온도; 90oC, 용출시간; 20분), 금속의 용출율은 As>Pb>Cu>Fe>Zn 순으로 높게 나타났으며, 용출잔사 내 Au의 함량은 33.77 g/ton에서 60.02 g/ ton으로 증가하였다. 염화물 용매제를 이용한 비교용출실험 결과, Au의 용출율은 T1(61.10%)>T3(53.30%) >T2(17.30%)순으로 높게 나타났다. 따라서, 해수를 이용하여 제조 가능하고 용출과정에서 발생되는 염소 가스를 포집하여 재이용 가능한 염화물은 Au용출을 위한 최적의 용매제로 예상된다. 또한 마이크로웨이브를 적용함으로써 시간, 효율 및 에너지 측면에서 효과적일 것으로 판단되어진다.
Ca2+ 이온으로 부분적으로 치환된 제올라이트 A (|Ca4Na4|[Si12Al12O48]-LTA) 단결정과 Se을 가는 모세관에 넣은 후 523 K 에서 5일동안 반응을 시켜 Se이 흡착된 제올라이트 A 단결정을 합성 하였다. 이 결정의 구조는 294 K 에서 단결정 X-선 회절 기술을 이용하여 Pm3m (a = 12.2787(13) Å) 입방 공간군에 속함을 확인 하였고, Fo> 4s(Fo)를 사용하여 최종 오차 인자를 R1/wR2= 0.0960/0.3483로 정밀화 하였다. 이 구조에서는 4개의 Na+와 4개의 Ca2+ 이온이 모든 6-ring 자리에 채워져 있었으며, 이들 이온들은 모두 6-ring 맞 은편의 3-fold 축상의 결정학적 위치에서 발견되었다. Se 원자들은 뚜렷하게 서로 다른 3개의 결정학적 위 치에서 발견되었다. 단위 세포당 2개의 Se(1) 원자는 sodalite cavity 내 6-ring 맞은편 (Se(1)-Na(1) = 2.53(5) Å), 1개의 Se(2) 원자는 4-ring 맞은편 (Se(2)-O(1) = 2.76(10) Å), 그리고 1개의 Se(3) 원자는 large cavity 내 6-ring 맞은편 (Se(3)-Na(1) = 2.48(5) Å)에 각각 위치하고 있었다. 2가지 형태의 Se2 분자 (Se(1)-Se(1) = 2.37(7) or 2.90(8) Å and Se(2)-Se(3) = 2.91(5)) Å)가 sodalite cavity와 large cavity 내에서 발견되었으며, Se4와 Se8 과 같은 형태의 클러스터가 large cavity 내에 존재할 수 있었다. 이들 클러스터내 Se 원자들 사이의 거리는 기체상태의 Se2 분자내 Se 원자 사이의 거리보다 더 길게 나타났다.
지각내부에서의 지진파 전파 특성은 지각의 주요 구성광물들의 격자선호방향에 크게 영향을 받는다. 따라서 지진파 전파속도자료를 이용해 지구내부구조를 해석하기 위해서는 해당 지역의 주요 구성 광물들의 격자선호방향과 이를 이용해 계산된 암석별 지진파 전파속도 특성 자료가 필요하다. 하지만 국내의 암석과 광물의 격자선호방향에 대한 연구는 거의 없는 상황이다. 이번 연구에서는 경기육괴 북부에 위치한 가평 위곡리 일대의 두 각섬암체에서 각섬암을 채취하여, 각섬암 내부의 주요 광물들, 특히 각섬석과 사장석의 격자선 호방향을 전자현미경/후방산란전자회절 기기를 통해 분석하고, 이를 이용해 가평지역 각섬암에서 나타나는 지진파 전파속도 특성을 계산하였다. 분석결과 가평 위곡리 일대 두 개의 각섬암체에서 각각 type I과 type IV 로 정의된 두 가지 타입의 각섬석 격자선호방향이 관찰되었다. 사장석은 비교적 약한 격자선호방향을 보여주었다. Type I 각섬석 격자선호방향이 관찰된 각섬암에서는 큰 지진파 비등방성이 관찰되었으나, type IV 각 섬석 격자선호방향이 관찰된 각섬암에서는 작은 지진파 비등방성이 관찰되었다. 이것은 이전의 실험결과와 일치하는 결과이다. 빠른 S파의 편파방향은 각섬석의 격자선호방향에 관계없이 선구조방향에 평행하게 나타났다. 가평지역의 각섬암에서 관찰된 이러한 지진파 전파 특성은 경기육괴 지각 내부의 구조와 지진파 자료를 해석하는데 도움을 줄 수 있을 것으로 기대된다.
화강암 석산에서 1번 면, 2번 면 및 3번 면으로 알려진 세 직교하는 분할면의 강도 특성을 검토하였다. R, G 및 H 공시체는 거창 및 합천 지역에서 분포하는 쥬라기 화강암류의 블럭 샘플로부터 획득하였다. 이들 세 공시체의 장축의 방향은 세 면 각각에 수직이다. 세 면에 대한 판별에 유용한 주요 사항은 다음 과 같다. 첫째, R, G 및 H 공시체의 일축압축강도와 관련된 세 그래프의 스케일링 특성을 보여 주는 도면을 작성하였다. 강도의 증가에 따라 세 공시체의 그래프는 H < G < R의 순으로 배열한다. 공시체 내부의 조직 균일도를 지시하는 세 공시체에 대한 그래프의 경사각을 비교하였다. H 공시체(θH, 24.0°~37.3°)에 대한 상기 한 각이 세 공시체 중에서 가장 낮다. 둘째, 두 공시체의 평균압축강도의 조합을 나타내는 RG, GH 및 RH 공시체의 세 그래프와 관련된 스케일링 특성을 도출하였다. 다양한 형태를 취하는 이들 세 그래프는 GH < RH < RG의 순으로 배열한다. 섯째, 강도차(Δσt)와 경사각(θ) 사이의 상관도를 작성하였다. 위의 두 파라미터 는 -0.003의 지수(λ)를 갖는 지수함수의 상관성을 보여 준다. 두 화강암에서, RH-그래프의 경사각(θRH)이 가장 낮다. 넷째, 세 공시체에 대한 세 종류의 압축강도 그리고 각 공시체에 가해진 압축하중에 평행 배열하는 두 조의 미세균열에 대한 다섯 파라미터 사이의 상관관계를 보여 주는 여섯 유형의 도면을 작성하였다. 거창 및 합천화강암에 대한 이들 도면으로부터, 빈도수(N, 0.872) 및 밀도(ρ, 0.874)와 함께 총 길이(Lt)에 대한 상관계수(R2)의 평균값(0.877)이 가장 높다. 또한, 세 공시체의 최소(0.768) 및 최대(0.804)의 압축강도에 비하여 평균압축강도와 관련된 상관계수의 값(0.829)이 보다 높다. 다섯째, 거창화강암의 세 공시체에서 발달된 상기의 두 조의 미세균열과 평행한 방향으로 측정한 압열인장강도의 분포 특성을 도출하였다. 관련 도면으로부터, R, G 및 H 공시체에 해당하는 이들 인장강도에 대한 세 그래프는 H(R1+G1) < G(R2+H1) < R(R1+G1) 의 순을 보여 준다. 인장강도에 대한 세 그래프의 배열순과 압축강도에 대한 세 그래프의 배열순과 상호 부합한다. 따라서, 세 공시체의 압축강도는 상기한 세 유형의 인장강도와 상호 비례한다. 여섯째, 상기한 세 그래프에서 도출한 각 누적수(N=1~10)에 해당하는 세 인장강도 그리고 각 그래프에 해당하는 다섯 파라미터의 값 사이의 상관 계수를 도출하였다. 10개의 상관도에서 도출한 각 파라미터에 대한 상관 계수의 평균값은 밀도(0.763) < 총 길이(0.817) < 빈도수(0.839) < 평균 길이(Lm, 0.901) 중앙 길이(Lmed, 0.903)의 순으로 증가한다. 일곱째, 세 공시체에 대한 일축압축강도 그리고 압열인장강도 사이의 상관도를 작성하였다. 상기한 상관도는 세 종류의 압축강도 그리고 다섯 그룹(A~E)의 인장강도를 근거로 아홉 유형으로 분류하였다. 관련 도면으로부터, 최소압축강도를 제외한 평균 및 최대압축강도와 함께 인장강도가 증가할수록, 상관계수의 값은 급격하게 증가한다.
필리핀의 따알 화산(Taal Volcano) 분화는 2020년 1월 12일에 시작되었다. 필리핀 화산학 및 지진학 연구원(PHIVOLCS)은 “몇 시간에서 며칠 내에 위험한 폭발성 분화가 발생할 수 있다.”고 판단하여 경보단계 (Alert Level) 4를 발령했다. 따알 화산섬의 주 분화구(Main Crater)에서 수증기 분화와 수증기마그마성 분화로 뿜어져 나온 화산재가 Calabarzon, Metro Manila, Central Luzon의 일부 및 Ilocos 지역의 Pangasinan 지역으로 확산되었고, 이로 인하여 학교 수업, 기업체 근무 및 항공편 운항이 중단되었다. 분화 이후 PHIVOLCS 는 2020년 1월 26일 따알의 화산활동이 일관되진 않지만 서서히 감소하는 것을 관찰하여, 경보단계를 3으로 한 단계 낮추었다. 2월 14일에는 화산활동의 전반적인 감소 경향 때문에 경보단계가 2로 설정되었으나, 이것 은 분화의 위협이 사라졌음을 의미하지 않는다. 또한 불안정이 상승하는 징후가 있을 경우 언제라도 경보단계가 3으로 상향될 수 있다.