A Fe(OH)2 suspension was prepared by mixing iron sulfate and a weak alkali ammonia solution. Following this, iron oxides were synthesized by passing pure oxygen through the suspension (oxidation). The effects of different reaction temperatures (30˚C, 50˚C, 70˚C) and equivalent ratios (0.1~10.0) on the formation of iron oxides were investigated. An equilibrium phase diagram was established by quantitative phase analysis of the iron oxides using the Rietveld method. The equilibrium phase diagram showed a large difference from the equilibrium phase diagram of Kiyama when the equivalent ratio was above 1, and single Fe3O4 phase only formed above an equivalent ratio 2 at all reaction temperatures. Kiyama synthesized iron oxide using iron sulfate and a strong alkali NaOH solution.
본 연구에서는 NH(sub)4OH에 계면 활성제를 첨가한 세정액의 특성 및 세정 효과를 H(sub)2O(sub)2가 첨가된 NH(sub)4OH 세정액과 비교 연구하였다. NH(sub)4OH에 계면 활성제를 첨가한 경우 용액의 pH 및 산화 환원전위(Eh) 는 NH(sub)4OH의 값과 거의 유사하고 H(sub)2O(sub)2를 첨가한 경우에 pH는 감소하고 Eh는 증가하는 경향을 보였다. 표면장력은 계면 활성제를 첨가한 경우 약 72 dynes/cm에서 약 38dynes/cm로 감소하였으나 H(sub)2O(sub)2를 첨가한 경우에는 NH?OH 용액과 비교 거의 변화가 없었다. 실리콘 웨이퍼의 식각 속도를 측정한 결과 H(sub)2O(sub)2나 계면 활성제를 첨가하지 않은 초순수와 1 : 5(NH(sub)4OH : H(sub)2O(sub)2)의 부피비의 NH(sub)4OH용액이 첨가한 용액에 비해 최소 50배 이상의 높은 식각 속도를 보였다. 파티클 제거 실험에서 H(sub)2O(sub)2가 첨가된 NH(sub)4OH 세정액은 실험에 사용한 실리콘 표면위의 직경 0.67μm의 PSL파티클을 세정액의 온도와 무관하게 잘 제거하였으나 계면 활성제를 첨가한 NH?OH경우에 상온에서는 파티클을 제거할 수 없었으나 온도를 50˚C와 80˚C로 증가시킨 경우 H(sub)2O(sub)2가 첨가된 NH(sub)4OH와 유사한 세정 효과를 나타내었다.
산업화가 가속화되면서 지구온난화는 환경을 위협하는 큰 문제로 대두되고 있다. 특히 지구온난화에 50% 이상 기여하는 물질인 이산화탄소는 그 농도가 산업혁명 이후 급격히 증가해왔으며, 이 문제를 해결하기 위해 전세계적으로 이산화탄소 저장기술(Carbon Capture and Storage, CCS)을 개발하는 연구가 활발하게 진행되고 있다. CCS 중 하나인 광물탄산화는 이산화탄소를 칼슘, 마그네슘 등과 반응시켜 불용성 탄산염으로 고정하는 기술이며, 원료로 칼슘이나 마그네슘을 다량 함유한 천연광물 또는 산업부산물이 사용될 수 있다. 제지슬러지소각재(Paper Sludge Ash, PSA)는 제지공정에서 생성되는 산업부산물로 칼슘을 다량 함유하고 있어 광물탄산화에 적합한 재료이다. 본 연구에서는 PSA를 암모늄염(ammonium chloride, ammonium acetate)과 반응시켜 칼슘을 선택적으로 용출한 후 탄산화하는 과정에서 암모니아수를 추가했을 때 탄산화 효율이 어떻게 변하는지를 알아보았다. 용제로 암모늄염 용액(0.3M, 1L)을 사용하여 PSA(20g)로부터 칼슘을 용출시킨 용출액 A와 용출액 A에 암모니아수(1.76mL)를 추가한 용출액 B를 각각 준비한 다음, 대기압 하에서 각 용출액에 이산화탄소(0.1L/min)를 30분 동안 주입하여 탄산화반응을 진행하였다. 용출액 A를 이용한 탄산화반응 결과 6.81g의 탄산칼슘을 회수하였고, 생성된 고체를 기준으로 산출한 이산화탄소 저장량은 149.8kg CO2/ton PSA이었다. 암모니아수를 추가한 용출액 B를 이용한 탄산화반응에서는 반응종료 후 용액 중 칼슘농도가 용출액 A 경우의 절반 정도이었다. 용출액 B로부터 7.69g의 탄산칼슘을 회수하였고, 이 결과는 이산화탄소를 169.2kg CO2/ton PSA 저장하였음을 의미한다. 칼슘 용출액 A에 암모니아수를 추가하면 완충작용이 지속되면서 높은 pH가 유지되기 때문에 용출액 B에서 탄산화 효율이 더 높아졌다. 또한 용출액 B에서처럼 암모니아수를 추가하면 한번 사용한 암모늄염 용제를 간접탄산화에 재사용할 때 칼슘 용출효율을 높이는데 기여하리라고 예상한다.