고준위방사성폐기물의 처분은 고심도 암반내에 처분시스템을 구축하는 심층 처분방법이 고려된다. 심층 처분은 처분용기, 완충재, 뒷채움재, 근계암반의 설계 요소인 공학적방벽과 천연 방벽으로 구성된다. 공학적방벽 중에서 벤토나이트 완충재는 암반으로부터 유입되는 지하수 흐름을 최소화하고 핵종 유출을 저지하는 기능을 한다. 지하수 유입으로 인한 완충재의 수리전도도 특성 규명은 처분장 공학적방벽의 안정성 및 건전성에 대한 성능 평가에 있어 중요한 사안이다. 본 연구에서는 경주 벤토나이트를 이용하여 다양한 건조밀도와 온도 조건에 따라 포화 수리전도도 실험을 수행하였으며, 120개의 실험 결과 를 다중 회귀 분석을 통해 수리전도도 추정 모델을 제시하였다. 실험 결과에서는 건조밀도가 커질수록 수리전도도가 감소하는 경향이 나타났다. 또한, 온도가 증가할수록 수리전도도가 증가하였다. 이러한 실험 결과들을 종합한 다중 회귀 분석 결과에서는 수리전도도 추정식의 결정계수(R2)가 0.93으로 높게 나타났다. 본 연구에서 제시된 수리전도도 추정식은 벤토나이트 완충재의 성능과 연관된 건조밀도와 온도의 영향을 고려하여 처분시스템의 공학적방벽 설계에 활용 될 것으로 판단된다.
고준위폐기물을 심지층에 처분하기 위한 공학적방벽의 구성 요소로는 처분용기, 완충재, 뒷채움재 등이 있다. 이 중 완충재는 처분용기와 근계암반 사이의 빈 공간에 설치되는 물질로써, 주변 지하수로부터 처분용기를 보호하며 방사성 핵종의 유출을 저지하는 등의 역할을 한다. 또한 처분용기에서 발생하는 고온의 열량은 완충재로 직접 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 있어 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재의 열전도도 특성을 규명하였으며 실제 처분용기에서 발생되는 고온의 특성을 반영하여 상온에서 80~90℃까지의 범위에서 압축 벤토나이트의 열전도도를 측정하였다. 온도증가에 따라 압축 벤토나이트의 열전도도는 5~20% 가량 증가하였으며 초기 포화도가 클수록 열전도도 증가는 더 크게 나타났다.
고준위폐기물을 처분하기 위한 심층처분시스템의 구성 요소로는 처분용기, 완충재, 뒷채움 및 근계 암반이 있다. 이 중 완충재는 심층 처분시스템에 있어 필수적인 요소이다. 처분용기에서 발생하는 고온의 열량은 완충재로 전파되기에 완충재의 열적 특성은 처분시스템의 안정성 평가에 상당히 중요하다고 할 수 있다. 특히, 고온의 열량은 완충재의 열적 팽창을 야기 하여 근계 암반에 열응력을 야기할 수 있기에 완충재의 열팽창 특성 규명은 반드시 필요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재(KJ-II)에 대한 열팽창 거동 특성을 실내 실험을 통해 분석하고 선형 열팽창계수 에 대한 추정 모델을 제시하고자 하였다. 압축 벤토나이트 완충재의 선형 열팽창계수는 딜라토미터 장비를 이용하여 승온 속도, 건조밀도, 온도 범위에 따라 측정되었으며 선형 열팽창계수 값은 대략 4.0~6.0×10-6/℃ 로 측정되었다. 또한 실험 데이터를 토대로 비선형 회귀분석 방법을 이용하여 건조밀도에 따른 경주 압축 벤토나이트 완충재의 선형 열팽창계수를 추정 할 수 있는 모델을 제시하였다.
고준위폐기물을 처분하기 위한 심층 처분시설은 지하 500~1,000 m 깊이의 암반층에 설치된다. 심층 처분시스템의 구성 요 소로는 처분용기, 완충재, 뒷채움 및 근계 암반이 있다. 이 중 완충재는 심층 처분시스템에 있어 필수적인 요소인데, 완충재 는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분용기에서 발생하는 고온의 열량은 완충 재로 전파되기에 완충재의 열물성은 처분시스템의 안정성 평가에 상당히 중요하다고 할 수 있다. 완충재의 열전도도 규명 에 대한 연구는 많이 진행되고 있는 반면, 비열에 대한 연구는 미진한 상태이다. 따라서 본 연구에서는 국내 경주산 압축 벤 토나이트 완충재(KJ-II)에 대한 비열 추정 모델을 개발하고자 하였다. 압축 벤토나이트 완충재의 비열은 이중 탐침법을 이용 하여 다양한 포화도와 건조밀도에 따라 측정하였으며, 총 33개의 실험 데이터를 토대로 회귀분석을 이용하여 경주 압축 벤 토나이트의 비열을 추정할 수 있는 모델을 제시하였다.
현재 고준위 방사성 폐기물 심층 처분 시스템에서 기본 완충재 물질로서 건조밀도 1.6 g/cm3의 경주산 칼슘 벤토나이트 를 사용하고 있으나, 열전도도가 낮은 단점이 있다. 따라서 본 연구에서는 기준 완충재의 열전도율을 0.8 W/mK에서 1.0 W/mK로 향상시키기 위한 목적으로 다양한 첨가제를 다양한 혼합 방법을 통해 배합하고 열전도도를 측정하였다. 첨가제는 CNT(Cabon Nano Tube), Graphite, Alumina, CuO 및 Fe2O3 등을 사용하였다. 혼합 방법의 경우, 핸드 믹서기를 통한 건식 혼합, 습식 Milling 혼합, 건식 Ball Mill 혼합 등을 실시하였다. Ball Mill 혼합의 경우가 가장 균일하게 혼합되었기 때문에, 값 의 편차가 가장 적었고 열전도도 증가율이 가장 좋았다. 지금까지 수행된 시험에서 소량의 고열전도 물질의 첨가로 경주산 칼슘 벤토나이트의 열전도도를 1.0 W/mK 수준으로 용 이하게 증가시킬 수 있음을 실험적으로 확인할 수 있었다. 결론적으로, 본 연구에서 제시된 열전도 향상 방법은, 첨가제 혼합 이 벤토나이트의 기본 성질인 팽윤압과 수리전도도에 미치는 영향까지 제시된다면, 국내 고준위폐기물 처분장의 개념 설계에 유용하게 활용될 수 있을 것으로 기대된다.
국산 칼슘 벤토나이트를 대상으로 온도가 팽윤압에 미치는 영향을 관찰하였다. 벤토나이트를 건조밀도 1.6 g/㎤으로 압축하고, 0.69 MPa의 일정한 수압으로 증류수를 공급하여 팽윤압을 측정하였다. 온도 영향 실험은 25℃, 30℃, 40℃, 50℃, 60℃, 70℃에서 승온조건과 감온조건으로 수행하였다. 압축 벤토나이트가 물과 접촉하여 상온에서 5.3 MPa의 충분히 높은 팽윤압이 작용하는 것을 실험적으로 확인하였다. 팽윤압 은 온도가 높을수록 감소하는 것으로 나타났다. 승온조건과 감온조건에서의 온도에 따른 팽윤압 거동에 차이를 보이며, 승온조건에서 온도에 따른 변화가 심하게 나타났다. 향후 온도 조건 외에 벤토나이트의 압축 밀도 변화, 지하수 조성에 따라 팽윤압 특성이 어떻게 변화하는지에 대해 평가한다면, 앞으로 국내 고준위 폐기물 처분장의 개념 설계에 유용하게 활용될 수 있을 것으로 본다.