Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.
해양 운송 산업은 특성상 항공 및 철도 등의 다른 운송 산업보다 비교적 늦게 신기술이 적용되는 산업이다. 현재 대부분의 선박은 기계장치 및 시스템에 문제가 발생하거나 운용 시간 기반으로 정비를 하는 사후 정비(Corrective Maintenance, CM)와 예방 정비 (Preventive Maintenance, PM)에 속하는 시간 기반 정비(TBM, Time Based Maintenance)가 적용되고 있다. 그러나 높은 유지보수 비용이 요구되고, 육상의 즉각적인 지원이 어려우며, 선박이 멈추면 즉시 위험에 노출되는 해양 환경에서 운영되는 선박에서 과도한 단순 정비로 인한 인력과 비용 낭비, 예측되지 못한 고장 및 결함으로 유발되는 사고 등으로 인해 운용 효율화 측면에서 기존 정비법에 대한 한계점이 문제시 되고 있다. 예지 정비(Predictive Maintenance, PdM)는 진보된 기술로 기계의 상태 및 성능을 모니터링하여 고장시기를 예측하여 정비하는 방법으로 핵심 기계장치가 항상 최상의 작동 상태를 효율적으로 유지할 수 있도록 한다. 본 논문은 해양 환경에서 PdM의 적용성에 중점을 둔 해양 예지 정비(MPdM, Maritime Predictive Maintenance)에 대해 고안하였으며, 제시된 MPdM은 지리적 고립과 극한 해양 상황 등 해양 운송 산업의 특수한 환경을 고려하여 설계되었다. 본 논문은 선진 미래 해양 운송을 가능하게 하는 MPdM이라는 개념과 그 필요성을 제안한다.
As a system complexity increases and technology innovation progresses rapidly, leasing the equipment is considered as an important issue in many engineering areas. In practice, many engineering fields lease the equipment because it is an economical way to lease the equipment rather than to own the equipment. In addition, as the maintenance actions for the equipment are costly and need a specialist, the lessor is responsible for the maintenance actions in most leased contract. Hence, the lessor should establish the optimal maintenance strategy to minimize the maintenance cost. This paper proposes two periodic preventive maintenance policies for the leased equipment. The preventive maintenance action of policy 1 is performed with a periodic interval, in which their intervals are the same until the end of lease period. The other policy is to determine the periodic preventive maintenance interval minimizing total maintenance cost during the lease period. In addition, this paper presents two decision-making models to determine the preventive maintenance strategy for leased equipment based on the lessor’s preference between the maintenance cost and the reliability at the end of lease period. The structural properties of the proposed decision-making model are investigated and algorithms to search the optimal maintenance policy that are satisfied by the lessor are provided. A numerical example is provided to illustrate the proposed model. The results show that a maintenance policy minimizing the maintenance cost is selected as a reasonable decision as the lease term becomes shorter. Moreover, the frequent preventive maintenance actions are performed when the minimal repair cost is higher than the preventive maintenance cost, resulting in higher maintenance cost.
As a system complexity increases and technology innovation progresses rapidly, it tends to lease a system rather than own one. This paper deals with a decision-making model to determine the preventive maintenance strategy for leased equipment. Various maintenance options are presented and formulated via the non-homogeneous Poisson process. During the lease period, the preventive maintenance strategy that minimizes the total cost among the presented maintenance options is selected. A numerical example is provided to illustrate the proposed model.
컨테이너터미널에서 사용되는 컨테이너 크레인은 컨테이너 선박의 컨테이너를 양적하하는 주요 장비이다. 크레인이 고장이 나면, 컨테이너터미널의 생산성을 감소시킬 것이다. 본 논문은 컨테이너 크레인에 대한 예방정비 일정을 다룬다. 컨테이너 크레인은 많은 부품으로 구성되고 3개의 모델을 사용하여 컨테이너 크레인의 구조를 분석한다. 그리고 최적의 예방정비 일정을 결정하기 위하여 유전자 알고리즘을 적용하고 시뮬레이션 시스템을 통해서 제안된 방법의 성능을 평가한다. 마지막으로 작업일정에 기초하여 산업체에서 발견된 예방정비 일정을 조정하는 방법을 설명한다.