A universal joint is a device that transmits the power of a combat vehicle engine to a cooling fan. The power of the engine is transmitted to the universal joint as it is without buffering, and play occurs at the joint between the drive shaft connected to the engine and the driven shaft connected to the cooling fan according to the usage time. Accordingly, the universal joint is periodically replaced, and the criterion for this is the degree of torsion of the universal joint. However, if the universal joint is not properly maintained during the replacement cycle, damage to the universal joint as well as damage to the surrounding power supply may occur. Accordingly, a backlash measuring device was developed to determine the limit of durability of the universal joint, and the limit of durability was derived through regression analysis of the backlash value according to the use time obtained from the accelerated life test.
Universal joint damage occurred during the operation of a combat vehicle. Damage to the internal bushing and cracks of the rubber cover occurred, and a design change was promoted based on the cause analysis and improvement measures. The failure of the bushing is due to the occurrence of expansion due to fatigue load when the rotation proceeds in the presence of the assembly clearance of the cross joint. In addition, cracks in the rubber cover are caused by the deterioration of the intermetallic rubber surface. Through this failure mechanism analysis, severe durability factors were selected and accelerated durability tests were conducted. In this paper, the final limit life of universal joints can be evaluated through accelerated endurance tests. Furthermore, the endurance life of the product before the change and the endurance life of the product after the change are compared to prove the improvement effect through design changes.
The premature failure of the universal joint connecting the drive gear box and the cooling fan caused a deterioration in serviceability and operability. Universal joint is a device that transmits engine power to a cooling fan. Internal pin breakage and shaft separation can cause secondary damage such as cooling fan malfunction and radiator damage caused by component failure. The purpose of this paper is to analyze the damage phenomenon of universal joints caused by bundles in SPVs and to improve them. In order to verify the improvement, a single part test and a system conformance test were conducted, and durability test was conducted to confirm the improvement effect on the improved prototype. Through these, the effects of increasing the durability of the improved product were estimated.
유니버설 조인트는 두 회전 축 사이에서 힘을 전달하는 구성 요소이며, 구동축과 피동축이 나란히 정렬되지 않아도 나란히 정 렬되지 않아도 동력전달이 가능하게 하며 각도 변화가 있는 전동축에서도 효율적으로 동력을 전달시키는 부품으로서 자동차의 동력전달 장치에서 많이 적용되고 있다. 차량의 경량화를 위해 고강도 알루미늄의 사용이 증가하고 있다. 본 연구에서는 알루미늄 6061 재질을 사용하여 유니버셜 조인트 샤프트를 성형하기 위해 환봉 압출, U-Shape 성형, Spline 성형 등에 대한 단조 해석 연구하였다. Bar Extrusion 성형 시 23.3Ton, U-shape 성형 시 62.2Ton, Spline 성형 시 3.2Ton, 총 Cycle Time 226sec의 성형 조건을 산출하였으며, 이를 적용하여 알루미늄 유니버셜 조인트를 제작하였다. 비틀림 시험을 통해 토크값은 평균 425.8(N・m), 비틀림 각은 평균 171.6° 의 실험값을 통해 기존 제품에 비해 단조 제품이 12.0∼14.4%의 비틀림 성능의 향상을 보였다.