The volume of fluid method is applied to study the effects of the gas channel wall contact angle on the removal characteristics of a water slug in a right angle PEMFC gas channel. While maintaining the same GDL surface contact angle, two different contact angle distributions on the control area in the corner region are compared via the water coverage ratio and water volume fraction. The water coverage ratios of the hydrophobic channel corner case mainly show smaller values than that of the hydrophilic case except around 27 ms. The water volume fraction of the hydrophobic corner case is supposed to drop down quickly around 27 ms due to the dynamic movement of the liquid water compared to the hydrophilic case. In overall, the hydrophobic corner case shows better water slug removal characteristics.
This research is to investigate the performance analysis of fuel cell for flow channel with four different types of the channel (Serpentine I, II, Inter-digitated, Parallel) in the fuel cell stack. Velocity, pressure. and temperature distributions of fluid over the flow domain of the flow channel are numerically calculated for the optimum design of flow channel with unifrom inlet velocity. According to the calculations of low pressure drop between inlet and outlet in the flow channel, Serpentine I type is of highest performance of the flow channel shapes in the present fuel cell model.