An attempt is given to the problem of analyzing the two-way binary attribute data using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the analysis of variance (ANOVA) may not be good enough, especi
In this paper, an analysis of two-way binary attribute data is performed using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the ANOVA may not be enough, especially for the case that the proportion is very low or high. The logistic transformation of proportion data could be a help, but not sound in the statistical sense. The adoption of generalized least squares(GLS) method entails much to estimate the variance-covariance matrix. On the other hand, the logistic regression methodology provides sound statistical background in estimating model parameters and related confidence intervals. The efficiencies of estimates are ensured with a simulated data with a view to demonstrate the usefulness of the methodology.
교통사고발생시 사고 심각도에 영향을 미치는 요인과 그 관계를 이해하는 것은 기하구조나 환경 측면에서 교통사고 발생을 예방하고 운전자와 사고 차량의 특성을 이해하는데 도움을 준다. 본 연구에서는 계층 이항 로지스틱모형에 의해 고속도로 교통사고 심각도에 영향을 미치는 요인을 파악하고 영향변수 간 차이를 나타내는 비교위험도(odds ratio)를 도출하였다. 사고 심각도는 인명피해와 차량피해로 구분하여 사망사고모형과 차량완파사고모형을 구축하였다, 종속변수는 사망자 발생과 완파차량 발생 여부이며, 각각 사고-탑승자, 사고-차량의 2수준 계층구조를 적용하였다. 추정 결과 설명변수의 고정효과는 두 모형이 유사한 결과를 보이나 종속변수의 속성에 따라 차별화된 결과를 나타내기도 하였다. 본선과 진출입부에서의 사고가 가장 위험하며, 중앙선 침범과 통행위반, 과속 사고의 상해나 차량 파손 위험도가 높고, 충돌사고와 추돌사고, 화재 사고의 피해가 크다. 사고 심각도는 노면 상태나 시야 조건 등 외부환경에 영향을 받으나 기하구조 조건은 관련이 없다.