인터넷상에서 관측할 수 있는 36 츠 자동화 망원경이 개발되었다. 이 시스템의 추적 오차는 약 1"/분이고, 지향 정밀도는 적경 방향에서 약 ±10", 적위 방향에서 약 ±20"였다. 이것은 계속 개선되어나갈 것이다. 예비관측을 통해 얻은 영상자료를 IRAF를 통해 분석해본 결과 비교적 안정적인 결과를 보여주었다. 이러한 결과는 원격천체관측 교육에 활용할 수 있음을 의미한다.
As a continuing effort to develop an automatic control system for small telescope, we developed the software for telescope control and CCD observations under DOS operating system. For accurate pointing of the telescope in short amount of time, we modelled the angular speed of the telescope by aquadratic function of time (constant acceleration) for the first 15 second and then linear function of time (zero acceleration) aftwewards. By changing the telescope speed from 'slew' to 'fine' before the telescope reaches the desired position, we could achieve the accuracy of a few arcsecond. The CCD control software was written for model CCD-10 of CCD Technology. This CCD can be used for guiding purposes. We also conducted the study for remote control of the telescope using telephone line. Although it cannot be used for real observations at the present form, we succeded in remotely pointing the telescope to desired direction. As faster communication technologies become widely available, simple observations can be made remotely in the near future. Finally we report some observational results made with the present control system.
The small sized telescope can be best used if the control and observation can be made remotely and fully automatically by the aid of computers. We discuss the possible ways of automating the existing telescopes of various designs using personal computers. 'We have specifically designed the parts necessary to automate 16 inch Cassegrain Telescope at Pusan University Observatory. The degree of automation we have set for the present work is the interactive. remote observation including opening and shutting down of dome slit. The observational modes we have in mind are photoelectric photometry and CCD imaging. The basic components of the hardware are interface card for 16 or 32 bit IBM PC family of computers, relay switches for the control of telescope movements, stepping motor controller card for the control of observational equipments, and AID converter unit that accepts signal from sensors for the environment conditions such as temperature, wind speeds, precipitation, etc. We also have designed and built a photoelectric photometer that can be fully controlled by the command of a computer. Such observational equipment is also essential in order that the remote observation can be realized.