The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton’s principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.
이 논문은 미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동에 관한 연구이다. 문헌고찰을 통하여 채택한 지배미분방정식과 경계조건을 DQM에 적용하여 고유진동수를 산출할 수 있는 수치해석법을 개발하였다. DQM에서 수치적분을 위한 격자점의 선택은 Chebyshev-Gauss-Lobatto 법을 택하고, 고유치의 산정은 QR 알고리듬을 이용하였다. 타문헌과의 결과비교를 통하여 본 연구의 걸과가 타당함을 보였고, DQM에 대한 적용성 검토에서 고유진동수의 산출이 매우 안정적임을 보였다.
이 논문은 연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동에 관한 연구이다. 연속성을 갖는 탄성지반을 Pasternak 지반으로 모형화하여 곡선부재의 자유진동을 지배하는 무차원 상미분방정식을 유도하였다. 상미분방정식에는 회전관성과 전단변형효과를 고려하였다. 곡선부재의 선형은 원호형, 포물선형, 정현형, 타원형의 4가지를 채택하였고, 단부조건으로는 회전-회전, 회전-고정, 고정-고정의 3가지를 채택하였다. 실험실 규모의 실험을 실시하고 본 연구의 결과와 비교하여 연구의 타당성을 검증하였다. 수치해석의 결과로 무차원 고유진동수와 곡선부재의 변수들 사이의 관계를 표 및 그림에 나타내었으며 진동형의 예를 그림에 나타내었다.
이 논문은 탄성지반위에 놓인 원호형 곡선보의 자유진동에 관한 연구이다. 회전관성 및 전단변형을 고려하여 두 개의 매개변수로 표현되는 탄성지반위에 놓인 원호형 곡선보의 자유진동을 지배하는 미분방정식을 유도하고, 이를 수치적분기법과 시행착오적 행렬값탐사법이 결합된 수치해석기법으로 해석하였다. 회전-회전, 회전-고정 및 고정-고정의 단부조건을 갖는 곡선보의 최저차모드 3개의 고유진동수를 산출하였다. 곡선보의 수평높이 지간길이비, Winkler 지반계수, 전단지반계수에 따른 고유진동수 변화를 분석하였으며, 회전관성 및 전단변형의 영향을 고찰하였다.
이 논문은 직시각형 단면을 갖는 원호형 등단면 띠기초의 자유진동에 관한 연구이다. 띠기초를 지지하는 지반을 두 변수 탄성지반으로 모형화하였다. 두 변수 탄성지반으로 지지된 원호형 띠기초의 휨-비틀림 자유진동을 지배하는 미분방정식을 유도하고 이를 수치해석하여 고유진동수 및 진동형을 산정하였다. 띠기초의 경계조건은 자유-자유로 하여 최저저차 4개의 고유진동수를 산정하였다. 수치해석의 결과로, 중심각, 깊이비, 접촉비, 탄성계수비, 지반변수 등 5개의 변수가 고유진동수에 미치는 영향을 보고하였다. 변위 및 합응력의 진동형을 그림으로 나타내었다. 실험을 통하여 이 연구의 결과를 검증하였다