Since the Framework Act on Resource Circulation was enacted in 2018, the government should establish a National Resource Circulation Master Plan every 10 years, which defines mid- to long-term policy goals and directions on the efficient use of resources, prevention of waste generation and recycling of waste. In addition, we must set mid- to longterm and stepwise targets for the final disposal rate, recycling rate (based on sorted recyclable materials and recycled products), and energy recovery rate of wastes, and relevant measures should be taken to achieve these targets. However, the current industrial waste (IW) statistics have limitations in setting these targets because the final disposal rate and recycling rate are calculated as the ratio of the recycling facility input to the IW generation. In this study, the material flow from the collection stage to the final disposal of industrial waste was analyzed based on the generation of 2016, and the actual recycling amount, actual incineration amount, final disposal amount and their rates were calculated. The effect on the recycling, incineration and final disposal rates was examined by changing the treatment method of nonhazardous wastes from the factory and construction and demolition wastes, which were put in landfills in 2016. In addition, the variation of the waste treatment charge was investigated according to the change of treatment methods. The results of this study are expected to be effectively used to establish the National Resource Circulation Master Plan and industrial waste management policy in the future in South Korea.
전국 폐기물발생 및 처리현황(2015년도 수정본)에 따르면 우리나라 폐기물발생량은 지정폐기물을 제외하고 1일 404,812톤이며, 이중 345,114톤이 재활용되어 재활용률은 85.2%이다. 우리나라의 생활폐기물 재활용률은 폐기물을 실제로 재활용제품이나 원료로 생산하여 자원으로 순환하여 이용한 양을 기준으로 하지 않고 생활폐기물을 수집하여 선별시설이나 재활용업체에 반입하거나 공급한 재활용 폐기물량을 생활폐기물의 총 수집량으로 나누어 계산하고 있다. 생활폐기물에 재활용대상 품목이 아닌 것이 섞이거나 부착되어 배출되면 재활용품의 선별과정이나 재활용 공정에서 제거되어 폐기물로 처리된다. 그러나 현재의 재활용률 산정방식에서는 이러한 이물질도 재활용량에 포함되기 때문에 재활용량이 실제로 자원으로 순환 이용된 양(최종 재활용제품이나 재생원료의 생산량)보다 많아 재활용성과가 과대평가된다. 따라서 주민이 분리배출에 잘 협조하여 재활용품에 혼입되는 이물질이 줄어들면 재활용률이 낮아지게 되는 모순이 생긴다. 폐기물재활용률을 산정할 때 재활용량을 산정하는 기준은 세계적으로 통일되어 있지 않다. 또한 동일 국가에서도 폐기물 관리 법규의 정의 등에 따라 재활용량으로 인정되는 처리방법과 재활용제품 등의 양을 산정방법이 다른 경우도 있다. 따라서 재활용률을 상호 비교할 때는 그 수치만을 비교해서는 안 되고 폐기물의 발생량과 재활용량을 어떤 기준에 의해 정하여 재활용률이 산정되었는지 살펴봐야 한다. 세계환경전략연구소(IGES)의 보고서에서는 재활용률 산정방법을 첫째, 어떤 제품 생산에 사용된 재활용 폐기물의 비율이다. 둘째, 사용종료 제품이나 폐기물을 물질재활용 공정에 투입한 비율이다. 셋째, 재활용을 위한 폐기물의 수집 비율이다. 넷째, 폐기물을 매립과 단순 소각에 의해 처리하지 않은 비율이다. 우리나라의 폐기물 통계의 재활용방법은 이중 두 번째에 해당된다. 또한 EU 국가에서 에너지회수와 성토재 등으로 사용한 양은 재활용량에 넣지 않는다. 본 연구는 국내・외 법규 등의 재활용 정의와 재활용률 산정방법을 비교・분석하여 합리적인 재활용 성과평가하기 위한 재활용률 산정방안을 제시하였다.
우리나라에서는 자원순환기본법이 2015년 5월 29일에 공포되어 2018년 1월 1일부터 시행된다. 이 법에 따라 국가의 중장기 단계별 자원순환목표를 달성하기 위해 시・도와 산업폐기물 배출자를 대상으로 자원순환 성과관리제가 도입된다. 그 대상 주체는 최종처분율, 순환이용률의 목표의 이행계획을 제출하고 목표를 이행한 후에 그 이행실적을 보고해야 한다. 그러나 현재 국내에서는 폐기물 종류별, 업체별 순환이용률을 산정하기 위한 통계 기반이 미흡하다. 이 성과관리제의 성공적 실시를 위해서는 일선 업체별 폐기물 종류별 폐기물의 순환이용 실태 파악과 자원순환률 산정방법의 정립이 필요하다. 현재 ‘전국 폐기물 발생 및 처리현황’통계는 1차 재활용시설로 반입된 폐기물이 전량 재활용(순환이용)된 것으로 간주하여 재활용률을 산정하고 있다. 폐기물에 따라서는 1차 재활용시설에서 재생원료 및 재활용제품이 생산되는 경우도 있으나 여러 단계의 가공 및 정제 공정을 거쳐 재생원료나 재활용제품이 생산되는 경우도 있고, 이들 재활용 공정에서 이물질 제거와 공정손실이 발생하므로 이를 고려하여 재활용률(순환이용률)을 산정하여야 한다. 본 연구에서는 재활용 폐기물의 특성(물리・화학적, 함수율 등)과 재활용공정을 고려하여 그 유형을 구분하고, 회수된 재활용 폐기물의 전 공정에 대한 물질흐름을 조사하여 실제로 천연자원을 대체하여 순환 이용된 유효재활용률을 산정하였다. 현재 재활용률의 산정방법에 대하여 국제적으로 통일된 방법이 없기 때문에 재활용 폐기물의 투입 시점, 1차 해체・선별하여 재활용 원료로 판매하는 시점, 최종 재생원료 또는 재활용품 생산시설의 투입 시점과 최종 재생원료와 재활용품의 제조완료 시점으로 구분하여 다양한 관점에서 재활용률을 산정하여 이를 비교・분석하였다. 이를 통하여 물질재활용에 대하여 폐기물 특성과 재활용 공정을 고려하여 합리적인 물질재활용률 산정방법을 제시하였다. 또한 다양한 재활용 공정의 물질흐름 분석을 통하여 폐기물의 유효재활용률의 향상방안과 재활용 정책의 기초자료를 수집・제시하였다. 본 연구 결과는 향후 자원순환 성과관리제도의 정착에 크게 기여할 것으로 판단된다.
본 연구에서는 지자체의 권역별‧지역별 특성을 고려한 자원순환 목표 설정을 도모하기 위해 가정생활폐기물을 대상으로 폐기물 처리 전과정 흐름분석을 실시하였다. 이를 위해 가정생활폐기물 배출형태(종량제봉투, 재활용품 및 남은 음식물류)에 따라 어떤 처리흐름에 따라 처리되는지를 살펴보고, 그 과정에서 잔재물로 배출되는 양 또는 재활용시설 등을 거쳐 추가적으로 최종 처분되는 양 등을 파악하였다. 여기서 폐기물 실질 재활용률 또는 실질 폐기물에너지화율은 폐기물 처리시설 반입량 대비 실질 재활용량 또는 실질 폐기물에너지화된 양(반입량-잔재물 발생량)을 의미한다. 17개 지자체의 실질 재활용률은 재활용품 선별시설의 경우 평균 72.2%로 50.4-93.2%의 범위를 나타내고 있으며, 음식물류폐기물 자원화시설의 경우 공공시설 평균은 90.9%, 범위는 72.2-100%이며, 민간시설 평균은 94.0%, 63.3-100%의 범위를 나타내고 있다. 실질 에너지화율은 가연성폐기물 연료화시설의 경우 평균 41.5%로 17.2-72.3%의 범위를 나타내고 있으며, 유기성폐기물 에너지화시설의 경우 평균 91.5%로 77.1-99.5%의 범위를 나타내고 있다. 이를 기초로 17개 지자체의 순환이용률을 산정한 결과, 평균 41.5%, 28.4-59.6%의 범위를 나타내고 있다. 국가의 자원순환 목표인 순환이용률 달성을 위해서는 재활용품 선별시설 및 가연성 에너지화시설 잔재물의 2차 재활용 또는 에너지화 방안을 추가적으로 강구할 필요가 있다. 본 흐름분석을 통해 산출된 실질 재활용률 및 실질 폐기물에너지화율을 기반으로 지자체의 현실을 반영한 자원순환 목표지표 설정이 가능할 것이며, 순환이용률 향상 방안 마련을 위한 기초자료로 활용될 것이다.
In this study, the recycling processes of construction and demolition waste (C&D waste) were analyzed, and its national recycling rate was determined using material flow analysis (MFA). Available statistical data provided by Ministry of Environment and Korea Environment Corporation were used for the MFA study. The collected data were carefully examined and validated by field investigations. System boundary for MFA covered from waste generation from construction sites to final disposal in 2013. The field investigation showed that recycled aggregate is produced through mechanical shredding, separation, and screening processes of C&D waste. The production efficiency (or process yield) was estimated to be approximately 81.2% on average. The foreign materials in the waste accounted for 18.8% by weight. The separated impurities were sent to recycling facilities, incineration facilities, or landfill sites, depending on the physicochemical characteristics. Efficiency of recycling facilities and the statistical data were integrated to estimate the national actual recycling rate, which turned out to be 87.7% in 2013. Approximately 49.1% of the construction-related waste was recycled as recycled aggregate for concrete production and road base layer for asphalt pavement. Based on the result of MFA, there is 9.8% difference between the actual recycling rate in this study and reported recycling rate by national statistics. In the future, more various C&D waste treatment and disposal facilities, along with aggregate recycling facility, should be investigated to verify the actual recycling rate determined by this study. Statistical accuracy should be further refined through additional field investigations. Our findings can be applicable to development of recycling policies and best management practices for C&D waste streams.
최근 전 세계적으로 환경오염이나 자원고갈이 급속히 진전되는 가운데, 건설 산업은 타 산업의 생산 활동에 비해 막대한 자원소비와 대량의 폐기물 배출 문제를 야기함으로써 지구의 환경부하를 증대시키는 주요 원인이 되고 있다. 특히 건설폐기물의 발생량은 1995년 국가통계가 기록된 이후 지속적으로 증가해왔으며, 그 양은 국가에서 발생하는 폐기물의 약 50%를 점유하는 수준(2013년 약 66,991,261톤)으로 이러한 추세는 앞으로도 지속될 것으로 예상된다. 국내에서는 이러한 건설폐기물의 적정 관리방안 마련을 위하여 다각적 측면의 검토 및 연구가 진행되어 왔다. 건설폐기물은 처리 지침에 따라 종류별, 처리방법별 분리배출 하여 재활용을 우선적 처리방법으로 하도록 하고 있다. 최근 2013년 국가 통계상 건설폐기물의 재활용률은 97.5%로 나타났다. 하지만 국가 통계상 재활용량은 재활용 시설로 반입되는 폐기물의 양을 나타내며, 공정에서 발생하는 이물질, 부산물, 손실량 등을 고려하지 않은 데이터 이다. 이처럼 국가 통계데이터는 현실적 요소를 반영하지 못하고 있어 실질적인 처리현황으로 판단하기에는 다소 한계가 있다. 이러한 문제점을 해결하고 국가 차원의 재활용 질적 수준과 현황파악을 위해서는 보다 현실성이 반영된 정보가 필요하며, 이러한 측면에서 재활용 시설의 공정파악과 물질흐름분석을 통한 기초자료의 구축이 매우 중요하다. 따라서 본 연구에서는 건설폐기물의 처리 공정 특성을 파악하고, 전과정 단계에 따른 물질흐름분석을 통하여 국가수준의 실질 재활용률을 산정하였다. 본 연구에서는 환경부, 한국환경공단 등의 통계데이터를 활용하였으며, 또한 건설폐기물 재활용시설 현장 실태조사를 통하여 통계 데이터를 검증하고 물질흐름분석 위한 기초 데이터를 수집하였다. 물질흐름분석의 시스템경계는 건설현장에서의 건설폐기물 발생단계부터 최종 처분단계까지를 포함하였으며, 시간적 범위는 2013년 연간 데이터를 활용하였다. 건설폐기물 재활용시설 실태조사 결과 반입되는 건설폐기물은 파쇄・분쇄 및 선별단계를 거쳐 순환골재로 생산되며 처리 공정의 순환골재 생산 수율은 약 83.7% 수준으로 산정되었다. 한편 반입량의 약 16.3%가 이물질로 선별되었으며, 그중 폐합성수지가 반입량의 약 8.43%로 가장 많은 비율을 차지하였다. 선별된 이물질은 각각 성상에 따라 재활용, 소각, 매립으로 배출되는 것으로 나타났다. 이러한 재활용시설의 공정수율과 국가 통계자료를 종합한 국가수준의 건설폐기물 실질재활용률 산정 결과 건설폐기물 발생량의 약 89%가 실질적으로 재활용되는 것으로 분석되었다. 또한 성토 및 복토용과 같은 저급용도(매립형 재활용)의 순환골재를 제외하면 발생량의 약 49.3%가 고급용도의 순환골재로써 재활용 되는 것으로 나타났다. 본 연구에서 실시한 물질흐름분석은 여러 가지 가정을 통하여 수행되었으며, 보다 정확한 건설폐기물 물질흐름분석의 수행을 위해 순환골재 생산시설 이외 다른 재활용 처리시설에 대한 조사가 필요하다. 본 연구의 결과는 건설폐기물 적정 관리를 위한 관련 정책 마련의 기초정보로 활용 될 수 있다.
This paper presents the actual recycling rates and recycling processes of waste plastic recycling facilities using material flow analysis. Determination of actual recycling rates through the processes of waste plastics is a very important subject not only from the point of plastic recycling efficiency energy conversion but also from the perspective of the recycling technology level. In this study, the recycling processes and recycling rates of waste plastic recycling facilities were evaluated by the MFA analysis based on 14 site visits and 25 questionnaires. The MFA methodology based on mass balance approach applied to identify the inputs and outputs of recyclable plastic materials in the recycling processes at recycling facilities. It is necessary to determine the composition and flows of the input materials to be recycled in a recycling facility. A complete understanding of the waste flows in the processes along with the site visit and data surveys for the recycling facilities was required to develop a material flow for the processes and determine the actual recycling rate. The results show that the average actual recycling rates for the recycling facilities by the site visit and the questionnaire was found to be approximately 87.5 ± 7.1% and 84.3 ± 14.5%, respectively. The recycling rates depended upon several factors including the quality of incoming waste plastics, the type and operating conditions of recycling processes, and the type of final products. According to the national statistics, the recycling rate of waste plastics was about 53.7%, while the actual recycling rate at national level was estimated to be approximately 45.1% by considering the recycling performance evaluated as well as the type of recycling process applied. The results of MFA for the recycling processes served as a tool to evaluate the performance of recycling efficiency with regard to the composition of the products during recycling. They may also support the development of the strategy of improvement of recycling processes to maximize resource recovery out of the waste plastic materials.