This study evaluated field application of low heat concrete using hydration heat analysis. The results of hydration heat analysis show that low heat concrete make sure of target thermal cracking index. Therefore, low heat concrete is suitable for field application.
In this study, the hydration characteristics in winter of low heat concrete with respect to the binder type are investigated experimentally. According to the research results, TBC1(Ternary Blended Cement) applied low heat concrete, the heat of hydration was found to be reduced and the 28 days compressive strength was superior to that of other TBC mixes.
In this study, the hydration characteristics of low heat concrete with respect to the binder type are investigated experimentally. According to research results, TBC(Ternary Blended Cement)1, 2 applied low heat concrete, the heat of hydration was found to be reduced and the 28 days compressive strength was superior to that of FAC(Fly Ash Cement).
This study evluated the Freeze-thaw and scaling resistance characteristic of high early-strength low heat cement concrete. The result Freeze-thaw and scaling resistance appeared to be excellent, and using high early-strength low heat cement can be applied to concrete structures of road facilities.
본 연구에서는 스트론튬계 잠열재를 사용한 저발열 콘크리트를 레미콘 배처플랜트에서 시험생산한 후 생산된 콘크리트의 기초성능 및 모의부재에 의한 수화온도 특성을 평가하였으며, 그 결과 스트론튬계 잠열재를 사용한 저발열 콘크리트의 현장적용 가능성을 확인하였다. 이후 스트론튬계 잠열재를 사용한 콘크리트를 실제 교각 건설현장에 적용하였으며, 적용부재에 대한 수화열 해석 및 타설 콘크리트의 성능평가 결과 수화열 및 온도균열 저감효과가 우수한 것으로 나타나, 향후 대형 매스콘크리트의 수화열 및 온도균열 저감대책으로서 활용이 기대된다.