It has been many efforts for reinforcement of existing structure since the number of earthquake has been increased world widely. Especially the occurrence of earthquake surrounding area of Korean peninsular is dramatically increased. Since the buildings in Korea have not been designed to carry the lateral and shear force caused by earthquake, the building will experience massive damages even under moderate earthquake. For this reason, the viscoelastic damper is proposed in this paper to enhance the earthquake resistance of a steel frame buildings. The viscoelastic dampers have been able to increase the overall damping of the structure significantly, hence improving the overall performance of dynamically sensitive structures. In this paper, Viscoelastic dampers designed are consists of FRP panel and viscoelastic material. In this paper, evaluate the performance of the viscoelastic damper through the experiment.
본 연구에서는 풍하중을 받는 고층 구조물의 진동저감을 위하여 사용되어온 전단형 점탄성 감쇠기의 2D, 3D FEM 모델을 이용하여 정밀하게 해석하여 점탄성재료와 이들을 결합하는데 사용하는 재료의 특성이 에너지 소산에 미치는 영향을 평가하였다. 특히 점탄성재료와 강재의 접합방식 및 크기, 형상등이 에너지 소산능력에 미치는 영향을 분석하였다. 이러한 정밀해석과정을 통하여 점탄성 감쇠기의 이력거동을 고찰 분석하고 이를 댐퍼설계에 활용하기위한 설계식을 제안하는 기초자료로 사용할 수 있게 하였다.
점탄성감쇠기가 설치된 구조물의 통합최적설계기법 및 비용효율성 평가기법을 제시하였다. 구조부재와 점탄성감쇠기의 사용량을 설계변수로 하여, 생애주기비용을 최소화하도록 최적화문제를 정식화하였으며, 유전자알고리즘을 적용하여 최적의 설계변수를 검색하였다. 수치예제에 대한 통합최적설계 수행 결과를 통해 지반운동 특성에 따른 점탄성감쇠기의 최적배치 및 각 층 강성의 최적분포 경향을 분석하였으며, 점탄성감쇠기가 설치되지 않은 구조시스템과의 생애주기비용 비교를 통하여 비용효율성을 평가하였다. 점탄성감쇠기는 특히 중약진지역에서 높은 비용효율성을 보이는 것으로 나타났다.
점탄성감쇠기 (VED)를 건물의 내부에 가새의 형태로 설치하는 기존의 방법은 공간 이용에 제약이 되며, 내부 동션을 방해할 수 있다. 이러한 단점은 VED를 건물 사이에 설치함으로써 해결할 수 있다. 본 연구에서는 신축이음부에 설치된 VED의 내진성능 향상 효과에 관하여 연구하였다. 이를 위하여 VED로 연결된 3자유도 구조물의 지진하중에 대한 각 설계 변수들의 효과를 파악하고, 제안된 방법의 실용성을 검토하였다. 이를 바탕으로 서로 다른 구조시스템으로 설계된 5층 구조물을 VED로 연결하고 시간이력 해석을 수행하였다. 해석 결과에 따르변 인접한 구조물의 고유주기가 다르게 설계된 경우, VED로 연결된 구조물의 내진 성능을 상당히 향상할 수 있는 것으로 나타났다.
점탄성감쇠기 (VED)를 건물의 내부에 가새의 형태로 설치하는 기존의 방법은 공간 이용에 제약이 되며, 내부 동선을 방해할 수 있다. 이러한 단점은 VED를 건물사이의 신축이음부 (신축줄눈)나 지진줄눈 사이에 설치함으로써 해결할 수 있다. 본 연구에서는 신축이음부에 설치된 VED의 내진성능 향상 효과에 관하여 연구하였다. 이를 위하여 VED로 연결된 3자유도 구조물의 지진하중에 대한 각 설계 변수들의 효과를 파악하고, 제안된 방법의 실용성을 검토하였다. 이를 바탕으로 서로 다른 구조 시스템으로 설계된 5층 구조물을 VED로 연결하고 시간이력 해석을 수행하였다. 해석 결과에 따르면 인접한 구조물의 고유주기가 다르게 설계된 경우, VED로 연결된 구조물의 내진 성능을 상당히 향상할 수 있는 것으로 나타났다.
본 논문에서는 동반논문에서 연구된 가진방법과 응답특성을 바탕으로, 실물크기의 철골건물에 설치될 점탄성 감쇠기의 설계과정을 다루었으며 가진실험을 수행하여 감쇠기의 진동제어효과를 검증하였다. 최대변위응답을 주어진 수준까지 감소시키기 위하여 요구되는 추가적인 감쇠비를 컨벡스 모델을 이용하여 구하였다. 모드변형에너지법을 이용하여 감쇠기 강성 변화에 따른 모드 감쇠비의 차이를 분석함으로써 감쇠기의 크기를 구하였다. 가새 강성의 효과 또한 모드의 특성을 구하는 과정에 반영하였다. 점탄성 감쇠기는 1층과 2층의 층간에 각각 2개씩 설치되었으며 응답효과를 검증하였다.
점탄성 감쇠기의 설계를 위한 자료를 얻기 위해 실물크기 5층 건물에 대해 가진과 시스템 식별을 수행하였다. 5층 바닥에 설치된 HWD는 건물을 움직이는 외부 가진력으로 작용하였고, 각 층의 응답을 측정하여 점탄성 감쇠기의 용량과 최적위치에 필요한 자료를 확보하였다. 고유진동수, 감쇠비, 모드와 같은 동적특성을 파악하기 위해 건물에 HMD로 조화하중과 백색잡음 하중을 주어 실험을 수행하였다. 동반논문에서는 건물의 층간에 설계된 점탄성 감쇠기를 설치한 후 응답 거동을 얻기 위한 실험 연구를 수행하였다.
본 연구에서는 비선형 정적해석법인 능력스펙트럼 법을 이용하여 성능목표를 만족하기 위하여 필요한 점탄성 감쇠기를 설계하는 절차를 제시하였다. 점탄성 감쇠기의 적정 크기를 구하기 위해 목표 변위에서 필요한 유효감쇠 비를 구한 다음 구조물의 이력거동에 의한 등가감쇠 비와 고유감쇠 비를 이용하여 필요한 감쇠기의 감쇠를 구하였다. 점탄성 감쇠기를 설치할 경우에는 구조물의 감쇠뿐만 아니라 강성도 변화하기 때문에 반복계산이 필요하게 된다. 본 연구에서는 먼저 단자유도계에서 구조물의 설계변수를 변화시키면서 제안된 방법의 타당성을 검증하였다. 또한 10층의 철골조 건물에 적용하고 지진응답을 구하였다. 제안된 방법에 따라 설계된 감쇠기를 설치하고 수행한 시간이력해석 결과에 의하면 고려된 설계변수에 관계없이 목표변위를 만족하는 것으로 나타났다.
본 연구는 물리역학적 특성을 고려한 점탄성 감쇠기의 수치모델에 의한 강뼈대구조물의 지진응답개선에 관해서 조사하고자 한다. 온도변화에 의한 감쇠기 이력거동에 미치는 영향을 고려하기 위하여, 점탄성 감쇠기의 모델은 온도-주기 등가원리와 더불어 개선된 분수도함수법에 기초하여 정식화하였다. 본 감쇠기 모델의 알고리즘을 일반화된 강뼈대구조물의 비선형 동적 해석 프로그램에 추가하였다. 강뼈대구조물에 대한 해석 예를 통하여, 제시된 모델에 의한 점탄성 감쇠기의 지진응답개선에 관한 효과를 확인할 수 있었다.
본 연구는 점탄성 감쇠기의 최적설계에 관한 연구로서 기존에 독립적으로 설계되던 점탄성 감쇠기와 설치용 가새 강성의 동시 최적설계 방법을 제시하였다. 이를 위해 직렬 연결된 점탄성 감쇠기와 가새를 상태방정식으로 모델링하였으며 최대응답계수를 이용해서 각층 최대 층간변위를 구속조건으로 하여 최적화 문제를 구성하였다. 구속조건에 대한 기울기 정보를 계산하는 과정에서 구조물의 동적거동에 관한 구속조건을 포함시켜서 문제를 재구성함으로써 변수를 줄일 수 있었다. 설계예제를 통해 현실적으로 충분한 가새 강성이 제공될 수 없는 경우에는 층간변위 구속조건을 만족시키기 위해서 가새 강성을 고려한 감쇠기 설계가 필요함을 확인할 수 있었다. 또한 가새 강성을 최적화 변수에 포함시킴으로써 불필요한 가새 강성을 줄일 수 있었으며 이를 보상하기 위한 감쇠기 물량의 상대적인 증가는 크지 않다는 것을 확인할 수 있었다.
고유진동수와 감쇠비는 지진이나 바람과 같은 동적 횡하중에 대해 구조물의 응답을 결정하는 주요한 특성이다. 본 연구는 지진하중에 대하여 목표응답 수준을 만족하는 구조물의 고유진동수와 감쇠비를 지정하고, 이 값을 실현하는 점탄성 감쇠기 파라미터의 처적분포를 구하는 설계방법을 제안한다. 여기서 지정할 고유진동수와 감쇠비는 목표응답 수준을 만족하는 여러 조합 중 설계조건과 원래 건물의 특성에 따라 결정될 수 있다. 제안한 설계방법은 점탄성 감쇠기의 감성 파라미터를 고유값의 기울기 정보를 바탕으로 분포시키므로 최적 위치와 크기에 대한 정보를 동시에 제공한다. 예제로서 평면 10층 전단 건물을 대상으로 최적설계를 수행하여 지정된 고유값을 실현하는 파라미터의 최적분포를 구하고 이를 통해 제안한 최적 설계의 특성을 확인하였다. 또한 더 나아가 3차원 일방향 비대칭 전단전물에 제안된 최적설계를 수행하여 그에 대한 적용가능성을 확인하였다.
본 연구에서는 진동제어를 목적으로 강성이 비대칭적으로 분포된 구조물에 점탄성 감쇠기를 설치할 경우 비틀림 응답을 줄이기 위한 감쇠기의 효과적인 배치방법에 관하여 연구하였다. 비대칭 구조물의 응답에 미치는 점탄성 감쇠기의 효과를 알아보기 위하여 비대칭 비비례감쇠시스템의 특성방정식을 유도하고, 고유치해석을 통해 감쇠기가 설치된 비틀림 건물의 거동특성을 파악하였다. 이를 바탕으로 강성 편심 및 진동수비에 따른 최적 감쇠 편심을 찾아 이를 3차원 그래프로 나타내었다. 이를 이용하여 비대칭건물에 감쇠기를 설치했을 때 같은 양의 감쇠기를 대칭으로 설치하였을 때 보다 그 효과가 더욱 향상되는 것으로 나타났다. 또한 비대칭 건물의 비틀림제어면에서 점탄성 감쇠기가 점점 감쇠기보다 우수한 것으로 나타났다.
본 연구에서는 철골조 건물의 내진 보강 방법으로 점탄성 감쇠기의 적용과 효과에 대하여 성능에 기초한 내진 설계의 관점에서 연구하였다. 먼저 단자유도계 구조물을 대상으로 입력된 지진에너지의 소산에 대한 감쇠기의 효과에 대하여 연구하였다. 설계하중으로 중력하중을 적용한 5층 건물과 중력하중과 풍하중을 적용한 10층과 20층 건물에 대하여 해석을 수행하였다. 비선형 시간이력해석을 수행하기 위하여 성능에 기초한 내진설계기준(안)에 제시된 표준 설계응답스펙트럼을 각 지반종류와 성능목표에 대하여 구성하고, 이를 바탕으로 인공지진을 생성하였다. 해석결과에 따르면 층간변위를 성능기준으로 적용하였을 때 모든 모델이 연약지반(기능수행 성능목표)을 제외한 대부분의 지반조건에서 기준안에 제시된 성능목표를 만족하였다. 또한 적당한 위치에 점탄성 감쇠기를 설치함으로써 내진성능을 향상시키고 구조물이 탄성적으로 거동하도록 유도함을 보였다.
복소모드 중첩법은 점탄성 감쇠기가 설치된 비비례 감쇠시스템의 정확한 동적 거동을 예측할 수 있는 방법이지만 많은 자유도를 갖는 고층건물의 해석시 고유치 해석과 모드중첩과정에서 많은 시간과 노력이 필요하게 된다. 본 논문에서는 효율적인 모형화를 위하여 강막가정과 행렬응축기법을 적용하고 구조물의 진동에 영향을 주는 주요모드의 선택을 위한 복소모드 응답참여계수를 제안하므로써 복소모드 중첩법의 효율성은 높였다. 또한 비비례 감쇠시스템에서 감쇠를 고려하여 응답스펙트럼을 재구성한후 선택된 주요 모드를 중첩하여 최대층간변위가 발생하는 곳에 감쇠기를 설치하였다 이 방법은 감쇠기가 설치된 구조물에 대하여 만족되는 수준의 최대층간변위가 발생할 때 까지 고유치 해석만을 반복.수행하면서 감쇠기를 연속적으로 설치하는 방법이다. 제안된 방법의 정확성과 효율성을 검토하기 위하여 예제 구조물의 대상으로 해석한 결과 응답의 정확성을 유지하면서 해석에 필요한 시간을 대폭 절감할 수 있었다.
건물의 진동에너지 소산능력을 향상하기 위하여 점탄성감쇠를 설치하게 되면 이른바 비비례 감쇠시스템이 되어 구조물은 복소수형태의 고유모드와 고유치를 가진다. 복소모드중첩법은 이러한 복소모드를 이용하여 중첩함으로써 비비례 감쇠시스템 구조물의 정확한 동적 거동을 얻을 수 있는 방법이다. 그러나 건물이 고층화되면 많은 자유도로 인하여 고유치해석 및 모드중첩과정에서 많은 시간과 노력이 필요하게 된다. 본 논문에서는 효율적인 구조물의 모형화를 위하여 강막가정과 행렬응축기법을 적용하였다. 또한 몇 개의 주요 모드만을 선택하여 중첩하는 방법에 대하여 연구하였으며 구조물의 진동에 영향을 주는 모드의 선택을 위한 복소모드 응답참여계수를 제안하였다. 제안된 해석방법의 정확성과 효율성을 검토하기 위하여 예제 구조물을 대상으로 해석한 결과, 응답의 정확성을 유지하면서 해석에 필요한 시간을 대폭 절감할 수 있었다.
본 연구에서는 점탄성감쇠기가 설치된 비비례 감쇠 구조물의 바람에 대한 확률적 응답을 진동수영역에서 구하였다. 복소수 고유치 및 고유백터를 바탕으로 모드중첩법을 이용하여 응답의 RMS 값을 구하고 그것을 근사적인 방법인 모드 변형에너지법에서 얻은 결과와 비교하였다. 또한, 가력 진동수에 따라서 변하는 점탄성감쇠기의 강성 및 감쇠 계수를 상수로 모형화하였을 때의 풍응답 해석 결과의 정확성을 진동수영역에서 검증하였다. 해석결과에 의하면 감쇠기의 진동수 의존 특성은 구조물의 1차 고유 진동수에 의해서 비교적 정확하게 표현되었고, 모드 변형에너지법은 대체로 정확한 결과를 도출하였지만, 가속도 응답을 구할 때에는 다소 큰 오차를 유발하였다.
점탄성감쇠기가 장치된 건물은 감쇠력과 강성이 증가하며 부가되는 감쇠력에 의하여 비고전적 감쇠시스템이 된다. 이러한 경우 비감쇠시스템에서 구한 고유값을 이용하여 감쇠행렬을 대각행렬로 변환할 수 없으므로 일반적으로 운동방정식을 2n크기 행렬의 1차 미분방정식 형태로 변환하여 해석하게 된다. 이러한 방법은 일반적인 고전적 감쇠시스템에 비해 복잡하므로 감쇠행렬의 비대각항을 무시하고 해석하는 방법이 이용되기도 한다. 본 논문에서는 이러한 근사적인 방법의 타당성과 이론적 근거를 검증하고 정해와 근사해법을 이용하여 3층 전단건물의 진동특성을 구하여 비교하였다. 결과에 따르면 부가되는 감쇠력이 작을 때는 근사해와 정해가 매우 근접하나 감쇠력이 커질수록 그 오차가 커지는 것으로 나타났다.
본 연구는 점탄성 감소기가 설치된 건물의 고유치 해석을 위하여 라그라란지 승수 방법(Lagrage multiplier formulating)을 이용하였다. 특성방정식은 건물의 고유진동수, 감소기가 설치된 층의 모드 성분, 감쇠기의 점성 및 강성에 관계된 식으로 나타났으며, 감쇠기의 점성으로 인하여 복소수의 형태로 표현이 되었다. 유도된 특성방정식은 고유치 해석을 위한 일반적인 형태의 식이 아니므로 본 연구에서는 그림 해석을 통하여 감쇠기의 설치로 인한 점성과 증가로 건물의 복소 고유진동수의 변화를 분석하는 방법을 제시하였다. 그림 해석으 결과에 따르면 감쇠기의 점성과 강성으로 인한 복소 고유진동수의 물리적인 의미를 확인할 수 있으며, 최소 및 최대값을 예측할 수 있다. 또한, 복소 고유진동수를 실수의 고유진동수와 모드 감쇠비로 변환하여 상태방정식에 의한 방법의 결과와 비교하여 정확성을 검증하였다.
본 논문은 점탄성 감쇠기가 설치된 고층건물의 효율적인 동적 해석방법에 대한 연구이다. 점탄성 감소기가 건물의 진동을 적절히 제어하기 위하여 사용되고 있으며 이러한 점타성 감쇠기가 설치된 건물의 동적거동을 예측하기 위하여 적절한 해석방법이 필요하다. 해석의 효율성을 높이기 위해서 강막가정과 행렬의 응축기법을 적용할 수 있는데, 점탄성 감쇠가가 설치된 건물은 강막가정을 고려한 행렬의 응축기법을 쉽게 적용할 수 없다. 따라서 제안된 해석방법에 감쇠행렬의 새로운 응축방법을 사용하였다. 그리고 예제 건물의 해석을 통하여 해석방법의 정확한 효율성에 대하여 살펴 보았다.
본 논문은 에너지 분산장치의 일종인 점탄성 감쇠기를 설치한 건물의 거동에 관한 연구이다. 평상온도에서 뿐만아니라 높은 주변온도 하에서도 점탄성 감쇠기를 설치한 건물은 이를 설치하지 않은 건물에 비해서 구조응답이 현저히 감소함을 나타낸다. 감쇠기에 대한 실험에서 얻은 결과를 회귀분석하여 감쇠기의 동적특성을 산정할 수 있는 실험식을 유도한다. 감쇠기를 설치한 건물의 구조감쇠는 모드 변형에너지법과 유도된 실험식을 이용하여 성공적으로 예측할 수 있다. 또한, 점탄성 감쇠된 건물의 지진하중에 의한 동적 구조응답을 예측하기 위하여 수치모형해석을 수행한다. 수치모형해석의 결과는 실험결과와 잘 일치하는 것으로 나타나 일반적인 모드해석방법에 의해 점탄성 감쇠기를 설치한 건물의 동적거동을 정확하게 예측할 수 있음을 보여준다. 이러한 결과를 토대로, 점탄성 감쇠기를 설치한 건물에 대한 설계방법을 제시한다. 이 설계방법은 일반적인 건물의 설계에 감쇠비라는 설계요소를 추가함으로서 가능해진다.