천수만과 태안해역의 제한영양염을 평가하기 위해 장기자료 분석과 생물검정실험을 진행하였다. 우선 잠재적인 제한영양염을 평가하기 위해 국가수질측정망에서 제공되는 2004~2016년 동안의 장기 영양염 자료를 이용하였다. 장기자료의 DIN/DIP를 분석한 결과 대 부분 16이하로 N 제한이 우세하였지만 N, P, Si의 농도비를 이용한 분석에서는 하계와 추계에는 N 제한이 우세하였고, 동계와 춘계에는 해역에 따라 일부 Si 제한을 보이거나 또는 제한이 나타나지 않았다. 생물검정실험 시 채집된 현장수의 영양염 분석결과, DIN/DIP는 3월 과 5월에 모든 정점에서 P 제한을 나타냈고, 7월과 10월에는 N 제한이 우세하였다. N, P, Si의 농도비를 이용한 분석에서 3월과 5월은 P와 Si 제한을 보이거나 제한영양염이 나타나지 않은 정점이 존재하였으나 7월과 10월에는 N 제한이 우세하였다. 실질적인 제한영양염을 평 가하기 위해 수행된 생물검정실험 결과 3월에는 특정 제한영양염이 나타나지 않았으나, 5월, 7월 10월에는 NH4 +와 NO3 -가 반응을 보임으 로서 이 시기에는 N이 식물플랑크톤 성장에 직접 관여하는 실질적인 제한영양염임을 확인하였다.
2017년 추계에 남해 전선역을 파악하고, 알칼리 인산분해 효소(Alkaline Phosphatase; APase) 활성을 이용하여 제한 영양염과 제한 영양염의 시간적인 변화를 평가하였다. 전선역이 형성된 인근해역의 경우, 용존무기인(dissolved inorganic phosphorus; DIP)의 농도와 용존무 기질소(dissolved inorganic nitrogen; DIN): DIP 비가 각각 0.2 μM 이하와 최대 23.2로, DIP가 제한된 환경임에도 불구하고 Chlorophyll a(Chl.-a)가 0.2 μg/L로 높은 생물생산력을 보였다. APase와 DIP는 중요한 역의 상관관계(r = -0.81; P<0.001)를 보여, DIP가 제한되어진 해역임을 알 수 있 었으며, APase와 Chl-a 관계는 APase의 60%가 식물플랑크톤, 40%가 박테리아 기원인 것으로 평가되었다. 용존태 APase와 입자태 APase의 분포로부터 전선역은 장기간 DIP가 제한된 해역이며, 그 외의 해역은 최근에 DIP 제한이 해소된 것으로 판단되었다. 따라서 전선역에서 APase와 같이 가수분해효소의 측정은 제한 영양염의 시공간적인 변화 특성을 평가할 수 있으며, 전선역에서 생지화학 순환의 이해를 높일 수 있을 것으로 생각된다.
An algal assay procedure using an indigenous phytoplankton assemblage was tested to estimate the propagation of red tide phytoplankton species and determine the optimal time interval at which to measure growth yield in eutrophic marine waters where red tides frequently occur. Various red tide phytoplankton species were propagated on a large scale by adding nitrogen or phosphorous. This procedure was useful for estimating the limiting nutrient, elucidating the mechanisms underlying red tides, and determining the levels of increases in organic matter in eutrophic coastal waters. The algal assay using indigenous C. polykrikoides showed that this species did not always propagate, apparently because of very low concentrations of trigger elements that are necessary for its growth, rather than as a result of other environmental characteristics, e.g., water temperature or stress from sampling. In the winter, when water temperatures are lower than in spring, summer, or autumn, maximum propagation and the limiting nutrient could be estimated by measuring phytoplankton biomass at 2–3-day intervals. However, in the other seasons, when water temperatures are higher, phytoplankton biomass should be measured at 2-day intervals. In particular, daily monitoring will be required to determine precise growth yields in warm seasons.