계면중합법은 혼합되지 않은 두 용액에 용해되어 있는 반응성 단량체들이 계면에서 중합되는 기술로 다양한 분야 에 응용되고 있다. 이 중, 수처리 분리막의 경우 m-phenylene diamine과 Trimesoyl chloride를 반응물로 사용하고 있다. 분리 막의 성능은 다양한 중합 성능에 의해 영향을 받고 있으며, 본 연구에서는 유기 용액의 퍼짐 속도가 어떻게 분리막 표면 및 구조에 영향을 주는지를 주사전자현미경을 통해 고찰하였다. 퍼짐 속도는 7.6과 25 mm/sec로 조절하였으며, 유기상 용액은 1~3방울까지 조절하였다. 관찰된 결과는 퍼짐 속도가 7.6 mm/sec에서는 한 방울 떨어트릴 경우, 25 mm/sec에서는 두 방울 떨어트릴 경우 폴리아마이드 막에 균열을 발견할 수 없었다. 반면 나머지 경우에 모두 균열이 발생하였다. 따라서, 초기 유기 용액의 퍼짐 속도는 폴리아마이드 분리막의 성능에 영향을 줄 것으로 관찰되었다.
Solution copolymerization of Styrene(St.) with 2-Hydroxypropylacrylate(2-HPA) was carried out with Benzoylperoxide(BPO) as an initiator in toluene at 80℃ in a batch reactor. Reaction volume and reaction time were 0.3 liters, 8 hours respectively. The time to reach steady state was about the six time. The monomer reactivity ratios, r1(St.) and r2(2-HPA) were determined by both the Kelen-Tudos method and the Fineman-Ross method ; r1(St.)=0.376(0.330), r2(2-HPA)=0.408(0.778). The activation energy of thermal decomposition was in the range of 33~55kcal/mol.
Copolymerization of α-Methylstyrene(AMS) with Acrylonitrile(AN) was carried out with benzoylperoxide(BPO) as an initiator in toluene at 80℃ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3 hours, respectively. The monomer reactivity ratios, rAMS and rAN determined by both the Kelen-Tüdös method and the Fineman-Ross method were rAMS=0.16(0.14), rAN=0.04(0.06). The cross-termination factor Φ of the copolymer over the entire AMS composition ranged from 0.75 to 0.92. The Φ factors of poly(AMS-co-AN) were increased with increasing AMS content. The simulated conversions and copolymerization rates were compared with the experimental results. It was observed that the average time to reach dynamic steady-state was three times the residence time.