Simultaneous modelling was carried out using the neural networks with three inputs including a distinguishing variable for the steam table. It covered whole steam tables including the compressed, saturated and superheated region of water. And relative errors of the thermodynamic properties such as specific volume, enthalpy, entropy were compared using the neural networks and the linear interpolation method. As a result of the analysis, The neural networks has proven to be powerful in modeling the steam table because it has slightly better results than the interpolation method.
The state variables of saturated and superheated region in the steam table were simultaneously modeled using the neural networks. And the results were compared with quadratic spline interpolation and Lagrange interpolation. Two input data without distinguishing parameter were used in the neural networks. For comparison, quadratic spline interpolation method for superheated region and Lagrange interpolation method for saturated region were applied. The overall results revealed that the neural networks were greatly superior to quadratic interpolation method or Lagrange interpolation method.