The purpose of this paper is to present a design method for friction damper (FD) for inelastic response control of short-period structure. A critical design parameter of FD is maximum friction force (MFF) and previous study evaluated MFF using equivalent damping ratio which is based on the maximum displacement. This procedure, however, gives the overestimated MFF for short-period structure. In this study, MFF of FD is evaluated based on RMS displacement response which is obtained by using given maximum response and peak factor. Numerical analysis shows that proposed method provide a reasonable MFF of FD for short-period structure.
Impact factor for used in the load carrying capacity evaluation of bridges is varied depending on vehicle speed and bridge frequencies. So, it is hard to define its peak value since in the field test the truck speeds applied cannot cover all possible vehicle speeds and the speed per each vehicle loading test cannot remain constant consistently. Furthermore, the target bridges should be closed during field test, which leads to an inconvenient traffic flow. In this paper, a displacement-based response spectrum of bridges is considered to define the peak impact factor without conducting the standard vehicle loading test, while using a bridge operational traffic condition.
In this paper, the peak impact factor response spectrum is verified through finite element (FE) analysis using a simply supported bridge. The FE model is a slab bridge designed with 4 m width and 8 m length. The FE analysis is applied on the bridge modeled with 2D frame and 3D solid. By considering 5% damping ratio, the peak impact factors of the FE models and the response spectrum are compared. From the results, a very small difference of about 1.5% is found between the FE models and the response spectrum.