To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 m3/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision–making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 – 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.
For studying of coagulation and sedimentation in estuarine clay, we obtained several flow curves with various concentrations of sea water by using Coutte type rotational rheometer. The initial shear stress on high concentration of sea water was observed big, but after this, its value is decreasing with increasing shear rate. The maximum pick of shear stress is decreasing with the decreasing of concentration of sea water. The trend is same totally above for viscosity. The sedimentation times with the concentration of sea water vary in ∞ ∼ 5 minutes.
The zeta potential is changed dramatically between 1/4 and 1/8 concentration of sea water. That is consistent with the sedimentation graph. From these results, the phenomena of coagulation and sedimentation can be explained with viscoelastic terms on structual formation among particles by the changes of surface potential affected from contacting sea water to dispersed particles.