Due to the rapid advancements in power distribution, television, and telecommunication, aerial cables have been rampant in urban cities. Aerial cables, while cost-effective, contribute to visual pollution, pose safety hazards, and complicate urban planning. To solve these challenges, many cities are exploring new ways to construct these cables without the use of high poles and one of the solutions is transitioning to underground cable by minitrenching method. Minitrenching offers a less invasive, more efficient solution for underground cable deployment. This study highlights the potential of innovative minitrenching materials to enhance underground cable protection while addressing the limitations of aerial cable installations in urban settings. Three minitrenching materials were evaluated to determine their effectiveness in protecting underground cables from heavy truck loads using finite element method (FEM). The materials tested were: (1) sand backfill with asphalt concrete surface, (2) cement mortar backfill with self-compacting mastic asphalt surface, and (3) cement mortar backfill with asphalt concrete surface. Results showed that the proposed materials (cement mortar and self-compacting mastic asphalt) significantly reduced strain on the underground cable compared to traditional materials (sand and asphalt concrete). The strain values decreased from 713 microstrains with traditional materials to 333 microstrains with the proposed materials, representing a reduction of approximately 53%. The third combination, intended as a maintenance material, yielded an intermediate strain value of 413 microstrains, demonstrating its acceptability as a minitrenching material.
기하학적 비선형성을 고려한 두 개의 비선형 프레임요소의 co-rotational 정식화 과정을 제시한다. 운동학적으로 엄밀한 첫 번째 프레임요소는 변형된 상태의 총 변형성분으로부터 부재력을 산정하며, 정확한 접선강성행렬을 적용한다. 아울러 total Lagrangian 및 updated Lagrangian 정식화에 따른 첫 번째 요소의 엄밀한 접선강성행렬이 동일하다는 것을 보인다. 이에 반하여 두 번째 프레임요소는 절점과 절점사이의 변형을 무시하고 직선으로 가정하여 근사적인 접선강성행렬을 산정 하고, 반복계산 시 증분변위로 부터 증분부재력을 구하여 총부재력을 산정한다. 두 개의 수치예제를 통해 첫 번째 프레임 요소가 기하비선형 거동을 추적하는데 있어서 더 정확하고 성능이 우수하다는 것을 입증한다. 특히 케이블부재의 비선형해 석 예제를 통하여 첫 번째 프레임요소가 휨강성을 고려한 케이블요소로 사용할 수 있음을 보인다.
본 논문에서는 케이블-막구조의 요소이동을 고려한 해석 기법을 제시하기 위하여 초기평형형상해석 및 응력해석과 요소이동성을 고려한 해석으로 구분하여 연구함으로서 이론적인 접근을 통해 요소이동성을 평가하였으며, 요소이동을 고려한 해석으로 ALE(Arbitrary Lagrangian-Eulerian) 유한요소법을 이용하여 작성된 알고리즘을 제시하여 다양한 예제의 검증을 통해 제안방법을 평가하였다.
본 연구에서는 케이블구조의 초기형상해석을 위한 새로운 탄성포물선 케이블요소(elastic parabolic cable element)를 제시한다. 이를 위하여 먼저 탄성현수선 케이블요소(elastic catenary cable element)에 대한 적합조건과 접선강도행렬 유도과정을 간략히 한다. 이를 토대로 장력이 충분히 도입되어 자중에 의한 처짐 형상이 포물선에 가깝다는 가정 하에서 무응력길이를 포함하는 탄성포물선 케이블요소의 비선형 힘-변형관계식과 접선강도행렬을 유도한다. 또한 현(chord) 방향으로 두 케이블요소의 등가 장력식을 정의한다. 본 요소의 정확성을 확인하기 위하여, 탄성현수선과 탄성포물선 케이블요소를 각각 적용하여 고정하중을 받는 사장교의 초기형상해석을 수행하고 무응력길이, 등가장력, 그리고 최대장력 결과를 비교, 분석한다.
본 연구의 주 목적은 다양한 요인에 의해 케이블-막구조물에 요소이동이 발생할 때, 당초 해석 시 가정되었던 좌표나 응력상태의 변화에 대해 막과 케이블 사이에 발생하는 요소이동의 방향이나 크기를 산정하고, 요소이동이 발생한 후 응력상태의 변화를 규명하는 것이다. 먼저 케이블 보강 막구조물의 요소이동 문제를 해석하기 위한 이론적 배경인 ALE 유한요소법의 개념을 소개하고, ALE 개념이 도입된 케이블-막구조물에서의 요소이동을 고려한 강성매트릭스를 작성하여 해석 프로그램을 개발한다. 개발된 프로그램의 타당성을 검증하기 위해 다양한 예제 해석을 수행한다.
본 논문에서는 케이블 지지구조물의 비선형 정적해석과 동적해석에 사용할 수 있는 개선된 유한요소가 제시되었다. 케이블의 모델화를 위해 등가탄성계수를 사용하고 처짐곡선을 현수선함수로 가정한 케이블요소가 제안되었다. 프레임 부재에 사용되는 안정함수는 수치적으로 안정한 해를 얻기 위하여 수정되었다. 본 논문에서 제안한 요소의 유용성과 효율성을 검토하기 위하여 다양한 검증문제에 대한 수치해석이 수행되었다. 해석결과 본 논문에서 제시한 유한요소는 케이블 지지구조물의 모델화에 매우 유용하고 효율적으로 사용될 수 있을 것으로 판단된다.
두개의 케이블요소를 이용한 3차원 케이블망의 정적 비선형 유한요소해석기법을 제시한다. 먼저, 공간 트러스요소와 탄성현수선 케이블요소(elastic catenary cable element)의 접선강도행렬과 질량행렬을 유도하는 과정을 간략히 요약한다. 지점 변위를 일으키고 자중을 받는 케이블망의 초기평형 상태를 결정하기 위하여, Newton-Raphson 반복법에 근거한 하중증분법과 현수케이블요소를 적용하는 경우에 viscous damping을 고려한 dynamic relaxation법을 제시한다. 또한 초기의 정적평형상태를 기준으로 추가하중에 대한 케이블망의 정적 비선형해석을 수행한다. 지점변위와 외력을 받는 케이블 구조에 대하여 비선형해석을 수행하고, 해석결과들을 기존의 문헌의 결과와 비교, 검토하므로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.
본 논문에서는 다양한 형태의 케이블 요소들의 거동이 강사장교의 극한강도에 미치는 영향을 검토하였다. 연화소성힌지 모델을 사용한 극한강도 평가 시 보-기둥 부재의 기하학적 비선형은 안정함수를 사용하여 고려하였고 재료적 비선형성을 반영하기 위하여 CRC 접선계수와 포물선 함수를 사용하였다. 케이블 부재는 새그의 영향이 고려되었다. 연구 결과 등가탄성계수가 반영된 등가트러스 요소를 사용한 경우 강사장교의 극한강도가 케이블 요소 또는 현수선 요소를 사용하여 평가한 극한강도 보다 안전측으로 평가되었다.