검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The "Super-Bus Rapid Transit" (S-BRT) standard guidelines recommend installing physical facilities to separate bus lanes, so as to remove possible conflicts with other traffic when using an existing road as an S-BRT route. Based on a collision simulation, we reviewed the protective performance and installation method of a low-profile barrier, i.e., one that does not occupy much of the width of the road as a physical facility and does not obstruct the driver's vision. METHODS : The LS-DYNA collision analysis software was used to model the low-profile barrier, and a small car collision simulation was performed with two different installation methods and by changing the collision speeds of the vehicle. The installation methods were divided into a fixed installation method based on on-site construction and a precast method, and collision speeds of 80 and 100 km/h were applied. The weight of the crash vehicle was 1.3 tons, and the segment lengths of the low-profile barriers were 2.5 and 4.0 m, respectively. The lowprofile barriers were modeled as precast concrete blocks, and the collision simulation for a fixed concrete barrier was performed by fixing the nodes at the bottom of the low-profile barrier. The low-profile barrier comprised a square cross-section reinforced concrete structure, and the segments were connected by connecting steel pipes with varying diameters to wire ropes. RESULTS : From comparing and analyzing the small car collision simulations for the changes in collision speeds and installation methods of the low-profile barrier, a significant difference was found in the theoretical head impact velocity (THIV) and acceleration severity index(ASI) for the 2.5-m barrier at a collision speed of 80 km/h. However, the differences in the installation method were not significant for the 4.0-m barrier. The occupant safety index with a collision speed of 80 km/h was calculated to be below the limit regardless of the installation method, and the length of the segment satisfied the occupant protection performance. At a collision speed of 100 km/h, when the segment length of the 2.5-m barrier was fixed, the THIV value exceeded the limit value; thus, the occupant protection performance was not satisfied, and the occupant safety index differed depending on the installation method. The maximum rotation angle of the vehicle, which reflects the behavior of the vehicle after the collision, also varied depending on the installation method, and was generally small in the case of precast concrete. CONCLUSIONS : Low-profile barriers can be installed using a fixed or precast method, but as a result of the simulation, the precast movable barrier shows better results in terms of passenger safety. Therefore, it would be advantageous to secure protection performance by installing a low-profile barrier with the precast method for increased safety in high-speed vehicle collisions.
        4,000원
        2.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to investigate the correlation between occupant impact velocities and occupant injury indices under the restraint of an airbag and a seat belt, during frontal crash events. METHODS : The frontal crash test data of 93 tests conducted according to the Korea New Car Assessment Program (KNCAP) were investigated. The test data was measured by using a dummy to obtain occupant injury indices for the head, chest, neck, and upper legs. Occupant impact velocities (OIVx and OIVz) were calculated from the head acceleration of the test dummy. Pearson's correlation analysis and regression analysis were used to investigate the correlation between occupant impact velocities and occupant injury indices. In addition, the occupant impact velocities at the center of gravity of a vehicle, obtained by using the accelerations measured at the test vehicle's B-pillars, were investigated. RESULTS: The OIVx threshold obtained from the test dummies, which corresponds to the HIC15 of 700, was 70 km/h for a sedan, and 72 km/h for an SUV, which is significantly higher than the occupant impact velocity of 44 km/h, the limit of the domestic guideline on “Installation and management guide for roadside safety facilities”. This difference can be attributed to the influence of the air bags and seat belts. Additionally, the OIVx threshold obtained from the center of gravity of the vehicle corresponding to the HIC15 of 700 was approximately 72 km/h. CONCLUSIONS: Occupant safety performance criteria for the condition that airbags operate and seat belts are restrained, are required for the frontal impact tests of road safety facilities using a collision velocity of 60 km/h or higher.
        4,000원
        4.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        차량방호 안전시설에 대한 성능의 검증은 충돌시험의 가속도와 각속도 데이터를 사용하여 산정한 탑승자 안전지수를 평가하여 이루어진다. 탑승자 안전지수로는 THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity)와 ORA(Occupant Ridedown Acceleration)가 있다. 탑승자 안전지수 계산에 상이한 데이터 처리과정과 수치절차의 적용이 가능하기 때문에 동일한 시험 데이터에 대하여 다양한 탑승자 안전지수값이 결정될 수 있어서 혼란이 초래되고 있는 실정이다. 이러한 문제를 해결하기 위하여 다양한 상세절차와 데이터 처리과정이 탑승자 안전지수에 미치는 영향을 조사하였다. 지침에 제시된 계측시간간격을 사용하여 차량충돌시험이 수행된다면 보간법과 수치적분방법은 THIV와 OIV 값에 영향을 크게 미치지 않았다. 그리고 PHD에 대한 10msec 이동평균방법과 데이터 처리과정의 영점보정은 탑승자 안전지수에 상당한 영향을 미치기 때문에 이에 관한 구체적인 방법이 지침에 규정되어야 한다.
        4,300원