The aim of this study was to develop a body type suitable for adult men aged from their 20s to their 40s and to present a method of drafting related patterns. To this end, the somatic surface pattern data from previous studies were used. The research method involved drafting torso patterns for each type by setting and distributing the ease to the somatic surface pattern. Appearance evaluation was performed with virtual clothing. Then, the torso pattern for each body type was completed and presented as a draft method. SPSS was used for data analysis in this study. The research results are as follows. Types 1, 2, and 3 were set to 7%, 6%, 5%; 7%, 6%, 4%; and 6.5%, 7%, and 6% for chest, waist, and hip circumference measurements, respectively. The ratio of front to back was 50%:50%, 50%:50%, and 50%:50% of the spare for each body part for Type 1; 70%:30%, 50%:50%, and 60%:40% for Type 2, and 60%:40%, 70%:30%, and 60%:40% for Type 3. A tight-fit torso pattern for each body type suitable for adult males in their 20s to 40s was drafted, which was modified and supplemented through the evaluation of the first and second virtual wear. Considering the practicality of this approach, for generalization of the patterns, the items of the pattern were converted into a drafting method and presented as a draft method.
The purpose of this study was to suggest torso patterns that fit the three main body shapes of elderly obese women. To reduce time, costs, and also the trial and error needed to make patterns, the CLO program for 3D test wear was employed. Three virtual models for aged obese women were use, with the YUKA system used to produce torso patterns. 3D simulation of test wear and corrections was done to design optimal torso patterns. The results were as follows: First, for the three models of obese women’s body shapes as realized by CLO 3D, Type 1 is lower-body obesity shapes, Type 2 is abdominal obesity shapes, and Type 3 is whole-body obesity shapes. Second, to design the study patterns, actual measurement values, back waist length and waist to hip length, were used. The armhole depth (B/4-1.5), front interscye (B/6+2.3), front neck width (B/12-0.5), front neck depth (B/12+0.5), front waist measurement (W/4+ 1.5+D), front hip measurement (H/4+2+0.5), and back hip measurement (H/4+3-0.5) were calculated using formulas. Third, according to the results of test-wearing the study patterns, reduced front neck width and depth improved the neck fit and reduced armhole depth bettered loose or plunging armhole girth and also reduced the sagging of bust c.. Also, tight sidesfrom aprotruded waist and abdomen improved with the increase of surpluses in the back waist and also back and front hip c. The exterior was enhanced by displacement of back and front darts, which distributed surpluses better.
The purpose of this study was to suggest torso patterns that fit the three main body shapes of elderly obese women. To reduce time, costs, and also the trial and error needed to make patterns, the CLO program for 3D test wear was employed. Three virtual models for aged obese women were use, with the YUKA system used to produce torso patterns. 3D simulation of test wear and corrections was done to design optimal torso patterns. The results were as follows: First, for the three models of obese women’s body shapes as realized by CLO 3D, Type 1 is lower-body obesity shapes, Type 2 is abdominal obesity shapes, and Type 3 is whole-body obesity shapes. Second, to design the study patterns, actual measurement values, back waist length and waist to hip length, were used. The armhole depth (B/4-1.5), front interscye (B/6+2.3), front neck width (B/12-0.5), front neck depth (B/12+0.5), front waist measurement (W/4+ 1.5+D), front hip measurement (H/4+2+0.5), and back hip measurement (H/4+3-0.5) were calculated using formulas. Third, according to the results of test-wearing the study patterns, reduced front neck width and depth improved the neck fit and reduced armhole depth bettered loose or plunging armhole girth and also reduced the sagging of bust c.. Also, tight sidesfrom aprotruded waist and abdomen improved with the increase of surpluses in the back waist and also back and front hip c. The exterior was enhanced by displacement of back and front darts, which distributed surpluses better.
This study is designed to analyze the similarity of fit and appearance between 3D virtual torso length sloper with real torso length sloper according to three 3D virtual clothing simulation programs (Optitex, CLO 3D, i-Designer), three body types (A, N, H) and fit status. We selected three representative body type models of females aged 20~30 and got their direct body measurements. Using these body measurements, we developed three 3D avatar body models and made three torso length fitted sloper with long sleeves. Thirty expert fit judges consisting of technical designers and graduate students assessed the similarity of fit and appearance between 3D virtual clothing and real clothing by observing images classified into front, back and side scene. We conducted ANOVA and post-hoc analyses to compare fit and appearance between real clothing and virtual clothing depending on three program. The results showed that CLO 3D represented fit and silhouette most similarly among the programs, especially girths, width and length. i-Designer tended to be relatively good to represent stress fold amount and silhouette. Optitex was assessed relatively better in expressing ease amounts in torso girths and armscye girths, but relatively worse for width, length, stress fold amount and silhouette.